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Cognitive Conditions of Diagrammatic Reasoning* 
 

MICHAEL H. G. HOFFMANN 

Abstract  

In the first part of this paper, I delineate Peirce’s general concept of diagrammatic 
reasoning from other usages of the term that focus either on diagrammatic systems as 
developed in logic and AI or on reasoning with mental models. The main function of 
Peirce’s form of diagrammatic reasoning is to facilitate individual or social thinking 
processes in situations that are too complex to be coped with exclusively by internal 
cognitive means. I provide a diagrammatic definition of diagrammatic reasoning that 
emphasizes the construction of, and experimentation with, external representations 
based on the rules and conventions of a chosen representation system. The second 
part starts with a summary of empirical research regarding cognitive effects of 
working with diagrams and a critique of approaches that use ‘mental models’ to 
explain those effects. The main focus of this section is, however, to elaborate the idea 
that diagrammatic reasoning should be conceptualized as a case of ‘distributed 
cognition.’ Using the mathematics lesson described by Plato in his Meno, I analyze 
those cognitive conditions of diagrammatic reasoning that are relevant in this case. 

Keywords: Diagrammatic reasoning, distributed cognition, mental models, learning, 
scaffolding, creativity 

 

1. What is ‘diagrammatic reasoning’? 
 
The concept of ‘diagrammatic reasoning’ was first introduced, as far as I can see, by 
John Venn in his article ‘On the Diagrammatic and Mechanical Representations of 
Propositions and Reasoning’ (Venn 1880). Venn’s idea was to develop with his 
‘Venn diagrams’—in the tradition of Euler’s ‘circles’ (Euler 1768)—a graphical 
alternative to sentential and algebraic forms to represent logical relations. Charles 
Peirce continued this work with his so-called ‘Existential Graphs’ (Peirce 1909; 
Roberts 1973; Shin 2002). ‘The System of Existential Graphs,’ he says, ‘greatly 
facilitates the solution of problems of Logic’ (Peirce CP 4.571). 

With regard to Peirce, however, it would be a mistake to identify diagrammatic 
reasoning with reasoning by means of Existential Graphs. For him, diagrammatic 
reasoning is more generally any form of ‘valid necessary reasoning’ (CP 1.54; 5.162). 
The logical operations that are possible by means of his Existential Graphs are only 
one form of diagrammatic reasoning besides others. Even algebraic forms can be 
‘diagrams’ (cf. CP 2.778; EP II 13), as well as sentences like ‘Ezekiel loveth Huldah’ 
(Peirce EP II 17). According to Peirce’s semiotics where all these terms are precisely 
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defined, ‘diagrams’ form a sub-set of ‘icons.’ The basic idea of ‘icons,’ however, is 
neither that they have a graphical or pictorial form, nor that they are similar to the 
objects they represent—although both is the case with icons like a photograph, a 
‘piece of mimicry,’ or a footprint—but that they represent relations: 

Many diagrams resemble their objects not at all in looks; it is only in respect to the relations of 
their parts that their likeliness consists. ... When, in algebra, we write equations under one another 
in a regular array, especially when we put resembling letters for corresponding coefficients, the 
array is an icon. ... In fact, every algebraic equation is an icon, in so far as it exhibits, by means of 
the algebraic signs (which are not themselves icons), the relations of the quantities concerned. 
(Peirce EP II 13) 

The specific difference of ‘diagrams’ in relation to other icons is that they are carried 
out according to certain ‘precepts’ (CP 2.216; NEM IV 47), that is according to the 
rules and conventions that are defined in a certain ‘system of representation’: 

A diagram is a representamen which is predominantly an icon of relations and is aided to be so by 
conventions. Indices are also more or less used. It should be carried out upon a perfectly 
consistent system of representation, founded upon a simple and easily intelligible basic idea. 
(Peirce CP 4.418) 

A sequence of words like ‘Ezekiel Huldah loveth’ might be interpreted as an icon, if 
we perceive it as representing a certain relation. But if we read ‘Ezekiel loveth 
Huldah,’ we have a diagram, because this sign represents a relation that is carried out 
according to the rules of English grammar. 

The fact that, according to Peirce, diagrams must be constructed by means of a 
certain representational system is essential for an adequate understanding of his 
concept of diagrammatic reasoning. His Existential Graphs are such a ‘perfectly 
consistent system of representation.’ Its soundness and completeness has been proven 
(Zeman 1964; Roberts 1973). However, axiomatic systems in mathematics are also 
consistent systems of representation, and our everyday languages are of course 
representational systems as well, although not necessarily ‘consistent’ ones. Peirce, 
indeed, says that he developed the concept of diagrammatic reasoning to describe the 
specific nature of ‘The Reasoning of Mathematics.’ In his so-called ‘Carnegie 
Application,’ he writes about the relevance of his discovery: 

The first things I found out were that all mathematical reasoning is diagrammatic and that all 
necessary reasoning is mathematical reasoning, no matter how simple it may be. By diagrammatic 
reasoning, I mean reasoning which constructs a diagram according to a precept expressed in 
general terms, performs experiments upon this diagram, notes their results, assures itself that 
similar experiments performed upon any diagram constructed according to the same precept 
would have the same results, and expresses this in general terms. This was a discovery of no little 
importance, showing, as it does, that all knowledge without exception comes from observation. 
(Peirce NEM IV: 47-48; my italics) 
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This quote not only provides one of the most precise definitions of Peirce’s general 
concept of diagrammatic reasoning, it also says something about one of the main 
functions it is supposed to fulfill: diagrammatic reasoning is a tool to generate 
knowledge (cf. CP 3.559 f.; 4.530 f.; 4.571). This heuristic function of diagrammatic 
reasoning is different from the function the Existential Graphs are supposed to fulfill, 
namely to facilitate ‘the solution of problems of Logic’ (Peirce CP 4.571). 

This duality of two different functions of diagrammatic reasoning that we can find 
in Peirce’s writings is mirrored in a variety of quite different interpretations of the 
term ‘diagrammatic reasoning’ we are facing nowadays in several research contexts. 
The term saw, for example, an impressive renaissance in computer science and logic 
over the last decades. Starting point was the idea that visual information is easier for 
humans to handle and plays a more important role in communication and learning 
than sentential representation systems and algebraic notations. Based on that, 
diagrammatic modeling of software systems, of knowledge representation, and of 
proof methods are some of the basic goals in this area (cf. Allwein & Barwise 1996; 
Anderson et al. 2000; Anderson et al. 2002; Barker-Plummer et al. 2006; Blackwell et 
al. 2004; Glasgow et al. 1995; Hammer 1995; Hegarty et al. 2002; Molina 2001; Shin 
1994; cf. also the overview by Shin & Lemon 2003). The focus in this work is mainly 
on diagrammatic representational systems in themselves—that is in their soundness, 
completeness, and usage in proofs. 

Another research tradition that is at home mainly in psychology and cognitive 
science uses the term ‘diagrammatic reasoning’ to describe the process of interpreting 
diagrammatic representations (Glasgow et al. 1995; Hegarty 2000; Larkin & Simon 
1987). This approach can be related to a huge literature on ‘model-based reasoning’ 
and ‘mental modeling’ (Bauer & Johnson-Laird 1993; Johnson-Laird 1983; Johnson-
Laird 1996; Magnani & Nersessian 2002; Magnani et al. 1999; Nersessian 2002). In 
all these areas, the focus is, first of all, on mental processes.  

By contrast to both these main lines of reasoning about diagrammatic reasoning, 
what I am interested in is what I described above as Peirce’s general concept of 
diagrammatic reasoning. Instead of dividing work on diagrammatic systems on the 
one hand, and on reasoning on the other, the focus here is on those forms of interplay 
between diagrams and reasoning that promote human creativity and learning (cf. 
Craig et al. 2002; Dörfler 2004,  2005; Giere 2002; Hoffmann 2004,  forthcoming-b; 
Magnani 2002; Stjernfelt 2000). This research can be related to studies on the role of 
graphical representations in ‘external cognition’ (Scaife & Rogers 1996). My main 
interest concerns an analysis of those cognitive processes that are involved when 
human beings perform diagrammatic reasoning to solve problems, to cope with 
complexity, to learn something new, or to resolve conflicts. Possible applications of 
diagrammatic reasoning I have in mind are the following: 
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● Peirce’s description of ‘the mathematician’s business’: to help an engineer, or 
a business company, or a physicist ‘to ascertain what the necessary 
consequences of possible facts would be’ in a situation where the facts are so 
complicated that these people cannot deal with them in their usual way (Peirce 
CP 3.559 f.) 

● when Maxwell draws a figure to derive the mathematical representation of the 
electro-magnetic field concept (cf. Nersessian 2002) 

● when a child tries to solve an arithmetical problem by means of her fingers 
(cf. Hoffmann forthcoming-a) 

● when Socrates—as described in Plato’s Meno—helps a boy to discover how to 
double a square by means of experimenting with figures drawn in the sand 
(Hoffmann 2003) 

● when Computer Supported Argument Visualization (CSAV) tools are used as 
‘sense-making tools to negotiate understanding in the face of multi-
stakeholder, ill-structured problems’ (Kirschner et al. 2003) 

● when negotiators try to resolve a conflict through Logical Argument Mapping 
(LAM), a tool that is supposed to change stakeholders’ mind-sets by 
visualizing implicit assumptions and stereotypes (Hoffmann 2005b). 

 
A general description of possible applications of diagrammatic reasoning is implied 
in what I consider here as the main function of diagrammatic reasoning: to facilitate 
individual or social thinking processes in situations that are too complex to be coped 
with exclusively by internal cognitive means. Such a ‘facilitation’ of thinking 
processes should be possible based on a variety of characteristics of diagrammatic 
reasoning. Having something in front of your eyes allows one to  

1. reflect on something without being constrained by the limits of one’s short-
term, or working memory 

2. analyze a problem more thoroughly and systematically 
3. clarify and coordinate confused ideas about a problem 
4. clarify implicit assumptions and background knowledge that might be 

insufficient or inadequate 
5. structure a problem space 
6. change perspectives 
7. identify ‘unintended and unexpected’ implications, like the general who sticks 

pins into a map during a campaign, ‘so as to mark each anticipated day’s 
change in the situations of the two armies’ (Peirce CP 4.530). 

8. play with interpretations (cf. Lindsay 2000; Roth 2004) 
9. discover contradictions 
10. distinguish the essential from the peripheral 
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Especially in collaborative settings, diagrammatic reasoning is supposed to  
11. focus attention by ‘putting something in the middle’ (Selvin 2003) 
12. initiate ‘negotiation of meaning’ regarding the elements used in a diagram and 

to motivate argumentation (Suthers & Hundhausen 2003) 
13. help to see and to explore the multi-perspectivity of a problem (Kanselaar et 

al. 2003) 
14. establish and maintain common ground (Baker et al. 1999) 
15. function as an external group memory that stabilizes the continuity of 

interactions and pushes things forward.  
 
In short, the main idea to facilitate thinking processes by diagrammatic reasoning is 
that it should be possible to reduce the cognitive load in individual and collaborative 
problem solving, decision making, and conflict management by means of external 
representations (cf. van Bruggen et al. 2002; Hoffmann 2005b). Three points are 
important for this understanding of diagrammatic reasoning. First, by contrast to what 
could be called ‘diagrammatic communication,’ diagrammatic reasoning is not 
concerned with representing something we already know. When I draw a map to 
explain a friend how to drive to a certain location, I would communicate by means of 
a diagram but I would not reason with it. Diagrammatic reasoning is about problem 
solving, decision making, knowledge development, and belief change by means of 
diagrams. However, I do not presuppose a clear cut distinction between diagrammatic 
communication and diagrammatic reasoning. There might be a continuity between 
both these possibilities. Reasoning with diagrams might have a communicative 
function as well—for example in collaborative learning, or deliberative decision 
making—and it might turn out that what we intend simply to communicate stimulates 
some interesting reasoning. 

The second point is referring to external representations. While I am following 
Peirce regarding his definition of diagrammatic reasoning, I restrict the use of the 
term to processes in which external representations are an irreducible part. Peirce, by 
contrast, sometimes assumes that diagrammatic reasoning can also be performed ‘in 
the imagination’ (Peirce NEM I 122; CP 1.443; 4.530). I do not doubt, of course, that 
it is possible to imagine how to determine the side of a square double the size of 
another square, or to calculate 9–5 without using the fingers, or to estimate the energy 
I need to move a weight on the longer arm of a balance by means of a ‘mental image’ 
of this balance; but my point is simply that I do not call those mental operations 
‘diagrammatic reasoning’ (by contrast to many chapters in Diagrammatic Reasoning: 
Cognitive and Computational Perspectives, Glasgow et al. 1995). The function of 
diagrammatic reasoning, as I understand the term, is to explain how it is possible to 
develop those mental capacities by referring to concrete, visible activities that allow 
us, first of all, to develop ‘mental models.’ As we will see later, internal processes are 
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necessary to explain the possibility of diagrammatic reasoning. Precisely for that 
reason I consider it an advantage to make a clear terminological distinction between 
diagrammatic reasoning as involving the construction of external diagrams and 
mental modeling that operates exclusively on mental models. Again, however, there 
might be a continuum between both these possibilities. When we sketch a diagram, 
for example, or indicate relations only by gesturing, the main point would be mental 
modeling that is supported by only vague external representations. 

The third point regarding the function of diagrammatic reasoning as described 
above concerns the more fundamental question what a ‘representation’ is. I am 
following here Peirce’s basic idea that semiotic relations are not dyadic relations—
that is relations between signs and objects they represent—but triadic relations. A 
sign is only a sign when it is interpreted as a sign that signifies something. For Peirce, 
three elements constitute a semiotic relation: a sign, or representation; an object; and 
what he calls the ‘interpretant’ (Peirce CP 2.228). Since all three are only relevant as 
part of a triadic relation, there is no ‘objective meaning’ of signs. A sign’s meaning 
depends on its interpretation. This intrinsic relativism of Peirce’s semiotics is 
constrained both by a community of sign users and an evolutionary development of 
sign meanings that is integrated in the progress of science. By contrast to this social 
and scientific ‘embeddedness’ of a sign’s meaning, Peirce’s various distinctions of a 
huge amount of different types of signs—symbol, index, icon, diagram, type, token, 
etc.—are mainly constructed in a top-down approach, based on a complex set of 
epistemological and phenomenological considerations (Hoffmann 2005a). An 
implication of this top-down approach is that signs like a ‘diagram’ are only formally 
defined. Applying those definitions, however, to identify signs we are facing in 
concrete situations depends again on interpretation. ‘Interpretation,’ in this context, 
should be understood from a functional point of view as formulated in Peirce’s 
‘pragmatic maxim’: meanings become visible in the ‘practical consequences’ that 
result from a signs usage (Peirce, CP 5.9; CP 5.438). 

Building on Peirce’s definition of a diagram quoted above (CP 4.418), I would say 
that a diagram is an external representation of relations that is constructed according 
to the rules and conventions of, and by means of the elements and relations available 
in, a certain system of representation. Such a representational system provides the 
means, and constrains the possibilities, both of constructing diagrams and of any 
manipulation we perform on those diagrams. As already discussed above, this formal 
definition of a diagram does not exclude the possibility of calling also normal 
sentences or algebraic equations ‘diagrams.’ It is only due to the conventions of 
ordinary English that I consider diagrams here primarily as spatial representations of 
relations. It is a widely shared assumption that the function of diagrammatic 
reasoning described above can best be fulfilled with spatial, or graphical diagrams 
(Barwise & Etchemendy 1994; Craig et al. 2002). 
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For that reason, and based on several of Peirce’s formulations that I quoted above, 
I define diagrammatic reasoning here in the form of a map (Figure 1). The 
representational system used to construct this diagram is Cmap, a freely available 
‘knowledge modeling kit’ that has been developed by the Institute for Human and 
Machine Cognition (IHMC), Florida, as a concept mapping tool 
(http://cmap.ihmc.us/). The ontology provided by the software consists of a virtually 

infinite two-dimensional space, text boxes, and n-adic relations. The only rule that 
constrains the construction of diagrams here is that each relation has to be named. 
Thus, Cmap is a very flexible representation system that provides a lot of freedom. 
By defining additional rules and conventions, however, it can be used to develop 
more specific representational systems like the one I elaborated for Logical Argument 
Mapping (LAM; cf. Hoffmann 2005b). 

Figure 1: A diagrammatic definition of diagrammatic reasoning 
(created with IHMC Cmap tools: http://cmap.ihmc.us/) 

http://cmap.ihmc.us/
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This diagram facilitates an understanding of diagrammatic reasoning at least in so 
far as the central role of the chosen representation system becomes evident. No other 
text box gets more references from other text boxes than this one. 

Elsewhere, I showed how based on this definition of diagrammatic reasoning a 
distinction of eight different forms of discovery and learning (abduction) can be 
developed (Hoffmann forthcoming-b). Here, however, my focus is different. The 
questions I want to answer in the second part of this paper are: What cognitive 
conditions must be fulfilled to learn something new by means of diagrammatic 
reasoning? What role do external representations play in cognitive processes? 

2. Diagrams as elements of distributed cognition 
 
Peirce was quite optimistic regarding the possibility of explaining learning processes 
and scientific discoveries—at least in mathematics—by diagrammatic reasoning: 

All our thinking is performed upon signs of some kind or other, either imagined or actually 
perceived. The best thinking, especially on mathematical subjects, is done by experimenting in the 
imagination upon a diagram or other scheme, and it facilitates the thought to have it before one’s 
eyes. (Peirce NEM I 122) 

From that he concluded that for any ‘concept’ or mental state ‘external signs answer 
every purpose, and there is no need at all of considering what passes in one’s mind’ 
(ibid.). This assessment corresponds to the core idea of his semiotics that ‘man is a 
sign’ (CP 5.314). As Vincent Colapietro explains: 

In opposition to the dominant mentalist tradition that has defined signs as the expressions of 
minds, Peirce proposed a thoroughgoing semiotic perspective in which the reality of mind is seen 
as essentially the development of a system of signs. The mind is a species of semiosis. (Colapietro 
1989 xx; cf. 97) 

For Peirce, human reasoning is a part of the development of signs, not the other way 
around. This approach can be justified by the fact that the representational systems 
we are using have a reality independent of ourselves. It is beyond our power to define 
their rules and the meanings of their elements completely arbitrarily—they are the 
means of a culture, not of individuals. However, representational means are not 
simply ‘out there,’ they are our means to construct diagrams. In this way, 
representational means are private as well as public, external as well as internal, they 
are, at the same time, the means of a culture that we have at our disposal and means 
that live only in our thinking and acting. 

Especially when it comes to learning and scientific discoveries we cannot simply 
claim that individuals are part of a universal semiosis. Discoveries are made by 
human beings. The challenge is, therefore, to explain the specific interaction that 
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happens between an individual’s cognitive processes and the culturally available 
representational means. 

To meet this challenge, it would be nice to have a theory of cognition that could be 
used to clarify cognitive conditions of diagrammatic reasoning. Unfortunately, what 
cognitive science can offer at this point is hardly sufficient for my purposes. 
Understanding human cognition is still one of those tasks where we know more about 
problems and limitations of our approaches than about solutions. However, empirical 
research indicates at least that  

● certain diagrams that are ‘informationally’ equivalent to sentential 
representations can nevertheless ‘computationally’ be more efficient when it 
comes to searching for information we need for problem solving, matching 
information to knowledge in long-term memory, and supporting ‘perceptual 
inferences, which are extremely easy for humans’ (Larkin & Simon 1987; 
critical Scaife & Rogers 1996: 195; but see also Healey et al. 2000 about the 
use of graphical media in synchronous communication. In their study, 
participants developed their use of graphics, producing progressively more 
abstract graphical representations as their experience increased); 

● the cognitive support diagrammatic reasoning can provide depends heavily on 
the chosen system of representation. As J. J. Zhang & Norman (1994) show, 
carrying out a multiplication by means of roman numerals (e.g. LXVII × X) is 
much harder than doing the same task by arabic numbers (68 × 10). An 
important additional result of their study regarding different representational 
forms was that subjects were the more successful in problem-solving tasks the 
more rules of the representational system were directly accessible in the 
external representations themselves and had not been learnt independently;  

● observable behavior—as has been shown with subjects playing Tic-Tac-
Toe—is ‘determined by the directly available information in external and 
internal representations in terms of perceptual and cognitive biases’ in a way 
that Zhang (1997) suggests the idea of ‘representational determinism’: ‘the 
form of a representation determines what information can be perceived, what 
processes can be activated, and what structures can be discovered from the 
specific representation’; 

● it is easier to work with already conventionalized representational systems 
than being forced to learn simultaneously domain knowledge and a novel 
representational system (Scaife & Rogers 1996: 206; Brna et al. 2001); 

● the more advanced subjects’ conceptual knowledge on a certain area is, the 
better they are at ‘fine-tuning’ diagrams according to the needs given by a 
task, at representational variability, and at using ‘fine-tuned diagrams as tools 
“to think with” while reasoning’ (Kindfield 1999); 
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● subjects performed better on certain tasks when they have either constructed 
diagrams in a preceding task that was structurally analogous to the target 
problem, or simulated a situation with wood blocks while studying an 
analogous problem (Craig et al. 2002); 

● diagrammatic reasoning, while expected to reduce cognitive load, can itself 
increase this load so that learning possibilities are reduced instead of enlarged. 
Empirical research on how people work with computer supported argument 
visualization (CSAV), for instance, hints at the dilemma that ‘the more 
specific an argument visualization technique is, the more it allows the users to 
disambiguate the problem and all of its aspects, the easier it will be to 
determine what the different perspectives on the problem are and the easier it 
should be to make sense of it and solve it. On the other hand, the more 
specific an argument the more complex it is to use it and the more room that is 
left open for not arguing the problem itself, but rather of discussing/arguing 
about the technique’ (van Bruggen et al. 2003: 42). Similarly, Merrill & 
Reiser (1993) show that an ‘additional working memory load’ is imposed on 
students if the structure of a certain representational system does not match 
well ‘with the structure of the students’ plan.’ (Cf. also Hegarty 2000); 

● diagrammatic reasoning supports ‘self-explanation’ as ‘an effective 
metacognitive strategy that can help learners develop deeper understanding of 
the material they study.’ In an experiment by Ainsworth & Loizou (2003) 
subjects were ‘presented with information about the human circulatory system 
and prompted to self-explain; 10 received this information in text and 10 in 
diagrams. Results showed that students given diagrams performed 
significantly better on post-tests than students given text. Diagrams students 
also generated significantly more self-explanations than text students. 
Furthermore, the benefits of self-explaining were much greater in the 
diagrams condition’; 

● there are limitations of using diagrammatic reasoning, and that ‘diagrammatic 
thinking has to be substituted and complemented by conceptual-verbal 
reasoning,’ although there are concepts whose ‘intrinsic lack’ of related 
diagrams ‘poses what can be called an epistemological obstacle to learning 
that notion’ (Dörfler 2005). 

Although these are important empirical results, we are still facing what Mike Scaife 
and Yvone Rogers identified already in 1996 as the central problem regarding 
‘external cognition’: ‘we need insight into how people read and interact with 
diagrams’ (206); we need an ‘adequate cognitive processing model’ (199). Scaife and 
Rogers criticize in particular the many approaches that commit what they call the 
‘resemblance fallacy’: They cannot find any indication that the role diagrammatic 
reasoning plays for cognitive processes is based on a resemblance of ‘external and 
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internal representations,’ or that graphic forms ‘encourage students to create mental 
images that, in turn, make it easier for them to learn certain types of material’ (199-
201).  

Especially if a structural equivalence is assumed between an external diagram and 
an internal ‘mental model,’ the cognitive problem posed by Scaife and Rogers is not 
resolved but simply duplicated. Every diagram is a finite and distinct entity formed by 
a set of countable, definite elements and relations; it is a more or less complex sign 
composed of symbols, indices, and icons. The idea of structural equivalence would 
imply that the corresponding ‘mental model’—whatever its neurological or symbolic 
manifestation might be—must be representable as exactly the same finite and distinct 
sign. No sign, however, can by itself determine what it is referring to. Its meaning 
depends necessarily on interpretation. That means, any representation—be it an 
external diagram or an internal mental model—is only a representation if it is 
representing something for somebody (Peirce CP 2.228). Take for example a city 
map. In order to use the map, you need to know where you are on the map, and you 
must relate points on the map to points in the city. The map itself cannot establish any 
relation to what it represents. Without this activity and cognitive ability of a user 
which is external to the map itself, the map is without any use. The same is true with 
regard to any diagram or model that is supposed to represent something. Even if it 
contains indices whose function it is to direct your attention to elements outside of 
itself, you have to interpret these indices. If it contains symbols you have to know the 
conventionalized meanings of these symbols. Without interpretation—which can fail, 
of course, or be insufficient—a sign does not signify anything, as Peirce showed. Or 
take a mathematical proof. A proof is only a proof if it is accepted at least by some 
people as a proof. (This became clear with very complicated proofs like Andrew 
Wiles’ proof of Fermat’s ‘Last Theorem,’ or in the debate on whether computer 
proofs are acceptable). Signs are signs only in those functional settings in which they 
can be interpreted—or misinterpreted—by means of knowledge that is already given 
(Peirce CP 8.183; 8.178f.), but which can also be acquired and developed, of course. 
If all this is true, I cannot see how it could not be true for mental models as well, if 
these are conceived of as structurally equivalent to external diagrams. 

Again, I do not deny the possibility of mental models or mental images. But the 
point is: such an assumption alone cannot explain how we interact with diagrams. We 
still need what has been called in good old-fashioned philosophy the ‘(epistemic) 
subject’ (cf. Hutchins 1995, chap. 9, and the critique of ‘encodism’ in cognitive 
science formulated by Bickhard 1992, Bickhard 1996, et al.). We need something like 
a subject or self as that entity in a model of cognition that is responsible for 
interpreting representations based on interests, purposes, beliefs, values, emotions, 
and factors like his or her lifeworld, environment, and neurophysiological state—
even if it turned out at the end that we have to conceptualize this ‘subject’ in a 
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completely new, more interactive, social, and dynamic way (cf. Bickhard 2004; 
Maturana & Varela 1987; Mead 1913; Valsiner 2005). 

To prepare at least some necessary steps with regard to cognitive conditions of 
diagrammatic reasoning, I will follow the philosophical method that was first 
developed by Immanuel Kant. Reacting to Hume’s criticism at any attempt to justify 
knowledge by observation and inductive reasoning, Kant thought that the objectivity 
of knowledge can only be guaranteed by means of principles that must be given 
before any experience and observation. Of course, there are hardly any philosophers 
anymore who would accept those metaphysical principles, but the strategy Kant 
developed—he called it the ‘transcendental method’ (Kant CPR B 81)—can still be 
very productive. In a more general way, this strategy starts with assumptions that 
nobody could doubt seriously. Nobody would doubt, for example, that there is 
causality in our physical world. However, as Hume showed, causality can never be 
observed since we can never know whether two events—the only things that are 
observable—are connected by causality or simply by coincidence. At this point, says 
Kant, the only thing we can do is to take the assumed reality of causation as the 
starting point and ask ourselves which conditions must be fulfilled to explain the 
‘possibility’ of those realities. 

That is exactly what I will do in the following considerations. I take it for ‘real’ 
that we can learn by diagrammatic reasoning, and I ask what kind of cognitive 
conditions we have to presuppose to explain this possibility. By formulating those 
conditions, I hope to identify at least a set of functions a cognitive model should be 
able to describe. 

A crucial advantage of such a transcendental, or functional, approach is that it 
starts from the unity of an individual’s external and internal world. This way, there is 
no need to bridge the gap between the external and the internal that is inevitable if we 
separate both. I agree with Hutchins when he says that those cognitivist approaches 
that focus exclusively on internal processes are as wrong as those approaches that 
claim, like behaviorism or Peirce in the first two quotes of this section, ‘that internal 
mental structure was either irrelevant or nonexistent’ (371 f.). And I agree with him 
that a more promising strategy would be to expand the concept of a ‘cognitive 
system’ in a way that external elements—like the visible diagrams we are using in 
diagrammatic reasoning—are included. Diagrammatic reasoning is, first of all, a case 
of ‘distributed cognition’ as defined by Hutchins (1995; cf. Clark 1998; Clark & 
Chalmers 1998; Giere 2002; Hoffmann forthcoming-a). Cognitive processes are 
‘distributed’ over a cognitive system that includes a diagram as something external to 
an individual’s brain, but internal to the cognitive system. 

To develop a better understanding of diagrammatic reasoning as a case of 
distributed cognition, and to clarify the question how mental, cognitive processes 
relate to, and are influenced by, diagrammatic reasoning, I will analyze an example. 
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My example can be taken as the oldest description of diagrammatic reasoning we 
know of, namely Plato’s description of an exercise Socrates performs with an 
uneducated slave boy (Plato Men. 82b–86c). Although Plato’s intention in this 
passage is quite the opposite of diagrammatic reasoning—his goal is to ‘prove’ his 
anamnesis thesis which claims that there is no learning, only a process of 
‘recollecting’ what we saw before birth as the ‘eternal form’ of everything—it seems 
to be far more appropriate to interpret this first known lesson in mathematics as a 
demonstration of Peirce’s claim that ‘Diagrammatic reasoning is the only really 
fertile reasoning’ (CP 4.571).  

Socrates makes sure that the boy knows what a square is by drawing a figure like 
ABCD in Figure 2 in the sand (including something like the dotted lines) and asking 
him some questions about it. The side AB of this square is supposed to be two feet, 
and it turns out that the boy knows that the size of the square is thus four square feet, 
and that a square double the size of ABCD would be eight square feet (82c,d). After 
an agreement is reached about these knowledge items, Socrates asks the boy how 
long the side of the eight square feet square would be. 

The boy’s first suggestion is that the side should be ‘twice the length’ of the 
original square side, that is four feet long (82e). Obviously, he simply correlates 
doubling the area to doubling the side. But 
what does Socrates do to show that this 
answer is inadequate? He experiments with 
the diagram of the square he just drew and 
demonstrates the implications of the boy’s 
suggestion at the concrete figure. This 
operation results in the square AGFE 
(Figure 2). Looking at this big square, the 
boy must admit that his answer yields a 
square that is four times the size, and not 
twice, of the original square (83b). 

Before we continue with Plato’s story, 
let us consider what kind of cognitive 
processes are involved so far. One point 
gets highlighted by Socrates immediately. 
The obvious disappointment the boy experiences regarding his expectations is an 
essential step in his learning process. Since he is able to acknowledge his ignorance 
regarding the matter, he is ‘in a better position’ now. In this new situation ‘he would 
be glad’ to find out the right answer, ‘whereas before he thought he could easily make 
many fine speeches to large audiences about the square of double size and said that it 
must have a base twice as long’ (84b,c). Seeing the necessary implications of his 

Figure 2: What is the side length of a square 
double the size of ABCD? 
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premature assumption motivates the boy to search for the correct solution. Socrates’ 
experiment with the diagram is a way to produce this motivation. 

However, what is it in this process of experimenting with the diagram that forces 
the boy to give up his first hypothesis? Although it might sound trivial from an 
educated point of view, it is crucial to note here that the boy’s insight in his failure is 
only possible if he fulfills the following cognitive conditions. He has to accept, first, 
that doubling the side of ABCD leads necessarily to AGFE, second, that there is a 
contradiction between this result and his expectation and, third, that contradictions are 
not acceptable, they have to be resolved. (As Lewis Carroll 1895 taught us in his 
funny story ‘What the Tortoise Said to Achilles,’ it is quite possible that someone 
does not accept logical necessity, even if it is hard to talk to those people). 

The first one of these conditions depends obviously on what is essential for 
diagrammatic reasoning: the consistency and rationality of the representation system 
we choose to construct a diagram. As noted in my definition of diagrammatic 
reasoning above (Figure 1), the outcome of any experiment we perform with a 
diagram is determined by the rules and conventions of the respective representational 
system. Observing the experiment with the original square, nobody would doubt that 
doubling the side of ABCD leads to AGFE, but this evidential truth is grounded in 
two very different things: on the one hand in the objective truth that a consistent 
representational system like Euclidean geometry determines necessarily the outcome 
of the observable operation on the diagram and, on the other, in the subjective 
precondition that we are able to accept this objective truth. (By contrast to the usual 
epistemological considerations, ‘objectivity’ itself is not a problem in this case since 
the representational system that guarantees objectivity has deliberately been created 
for this very purpose: to guarantee objectivity for geometrical operations). It is 
essential that, on the one hand, the representation systems we are choosing to 
construct a diagram are cultural tools whose validity, usefulness, or appropriateness 
is socially established so that individuals cannot change it by their own choice and, on 
the other, that the outcome of any experiment with such a diagram is necessary and 
true for us. 

Based on this, we can say the boy’s first step of learning by means of 
diagrammatic reasoning depends on the following cognitive conditions. He has to 

1. know the rules and conventions of a representational system that determine 
the construction of a diagram and the outcome of experiments with it (at least 
so far as they are relevant for a concrete problem); 

2. accept these rules and conventions; 
3. accept the principle of non-contradiction; 
4. feel forced to avoid contradictions, and to be motivated to look for a 

resolution of contradictions. 
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If we don’t accept these four points as preconditions, we could not explain the boy’s 
insight into his failure, and his motivation to do it better. But this assumption leads to 
some serious and interesting problems. So far, we followed a transcendental strategy, 
that is we started from the fact that the boy realizes his failure and we looked for the 
conditions that have to be fulfilled to provide this possibility. At this point, a Kantian 
transcendentalist would argue that something like the principle of non-contradiction 
is part of our ‘a priori knowledge,’ that is we have to presuppose it as given before 
any experience. However, we know that small children do not have any problems 
with accepting contradictions—they simply do not care. And the rules and 
conventions of Euclidean geometry—as its name tells—were formulated by Euclid. 
Neither did they exist before Euclid formulated them, nor are they necessary as we 
know from non-Euclidean geometries. Therefore, it seems to be more appropriate to 
replace any a priori assumptions at this point by the idea that whatever we have to 
presuppose as the boy’s cognitive preconditions is itself the result of development and 
learning. 

This consideration, however, leads to the first of the problems I mentioned above. 
If we assume that the cognitive conditions that are necessary for diagrammatic 
reasoning have to be developed themselves, how do we develop them? Although the 
boy in Plato’s example seems to fulfill all these conditions, it is not hard to imagine 
what would happen if he would fail to do so. Obviously, Socrates would teach him 
what he needs to know to perform the process of diagrammatic reasoning. This would 
be easy in this case regarding the rules of the used representational system, and it 
wouldn’t be much harder to teach him the principle of non-contradiction. However, 
we should keep in mind two important points: on the one hand, that the four points 
listed above are nevertheless absolutely basic cognitive abilities and, on the other, 
that they have to be accepted without any exception. These are general rules of 
Euclidean geometry and general logical principles; we are neither allowed to change 
the rules and conventions of a representation system during diagrammatic reasoning, 
nor to switch between accepting and rejecting the principle of non-contradiction. If 
we would commit one of those ‘crimes’—and young children do this pretty often—
there would be considerable social intervention to make us accepting them. 

Mark Bickhard (1992) highlights in his ‘interactivist’ approach to cognition—
building on evolutionary and genetic epistemology (Campbell 1974; Piaget 1970)—
the influence of ‘selection pressure’ as a condition of developing those procedures 
and representational contents that are adequate in a certain type of situation regarding 
a certain goal. We only keep as cognitive tools what helped us to accomplish a certain 
goal. If you want to satisfy your hunger, you better learn your motor control in a way 
that you can handle a spoon if only mash is available. And what seems to work with 
infants based on pressure provided by our physical environment, seems to work as 
well when it comes to select those logical principles and rules of representational 
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systems that we need to perform diagrammatic reasoning. In this case, however, it is 
the social environment—parents, teachers, and peers—that tells us what is acceptable 
and what is not. Teaching and social pressure seem to be the primary factors in 
developing those conditions of diagrammatic reasoning that are necessary to perform 
this reasoning. 

Learning by social interaction, however, is itself only possible if we presuppose an 
even ‘deeper’ level of cognitive abilities. In order to learn by social interventions we 
have to be able to understand what people are telling us, we must be able to make 
sense of their words in relation to a given situation, and we must be willing to follow 
their suggestions—an ability that seems to decrease when people become older—and 
so on. Thus, the solution of our first problem concerning the development of those 
cognitive conditions we have to presuppose to explain the boy’s disappointment leads 
us to the assumption of a complex, hierarchical order of cognitive conditions. This 
order may vary from situation to situation. 

A second problem might be more serious. If the boy fulfills the four conditions 
listed above, why does he come up with his wrong answer in the first place? Knowing 
the rules of Euclidean geometry and accepting the principle of non-contradiction 
obviously excludes the possibility that the side of the doubled square is four feet long. 
Why, then, does he suggest this? This question can only be answered if we are more 
careful with regard to the meaning of ‘knowing’ Euclidean geometry and the 
principle of non-contradiction. Obviously, the boy does not ‘know’ these things in a 
way that this knowledge would prevent him from suggesting a wrong answer to 
Socrates’ question. But what kind of knowledge does he have? 

His answer to Socrates’ question in which he suggests that the double-sized square 
should have a side ‘twice the length’ of the original square assumes that he only has 
confused ideas about the relations between area sizes and lengths. In this situation, 
the central role of diagrammatic reasoning becomes evident. There would be no need 
to construct a diagram if the boy were already able to give the correct answer. The 
function of diagrammatic reasoning is—as noted above—to facilitate thinking 
processes in situations that are too complex to be coped with exclusively by internal 
cognitive means. For the boy, the problem of determining the side length of a doubled 
square is too complicated. He needs to observe Socrates’ manipulation of the diagram 
to see what is going on if he doubles the side. The process of diagrammatization 
allows him to clarify his vague ideas and to coordinate what he already knows in a 
way that makes clear to him that his first answer was wrong. 

This function of diagrammatic reasoning in the boy’s learning process can be 
described by the metaphor of ‘scaffolding’ which has been introduced to 
psychological research first by Wood et al. (1976) in a discussion that goes back to 
Vygotsky’s idea of the ‘zone of proximal development’ (cf. Rogoff & Wertsch 1984). 
While they used the term to characterize the role of a more knowledgeable individual 



18 

for a learner—a teacher or parent who provides more advanced knowledge that works 
like a temporary framework used in the construction of buildings—more recent talk 
on ‘scaffolding’ is broader (cf. Sherin et al. 2004; Renninger & Granott 2005). It 
includes any sort of external support ‘that makes a particular learning process 
possible and that can be discarded after the learning has taken place’ (van Geert & 
Steenbeek 2005: 116). However, the more it becomes clear that scaffolding is a useful 
concept to describe the possibility of learning, the more difficult it becomes to 
identify an understanding of this process, and a definition of the concept, upon which 
a majority of scholars would agree (cf. Sherin et al. 2004). Additionally, 

While ‘scaffolding’ is intuitively a compelling description of the process that can occur during 
interaction, details about how and why scaffolding works as it does are still being compiled. Its 
measurement is complex. (Renninger & Granott 2005: 111) 

In this situation, it might be more adequate to continue the analysis of our example 
in order to get a better understanding of what ‘scaffolding’ could mean in this 
concrete case. The first point I would emphasize is that in Socrates’ interaction with 
the boy we find a combination of ‘scaffolding by persons’ and ‘scaffolding by means 
of a diagram.’ Obviously, Socrates’ success depends heavily on the fact that he draws 
a diagram representing the problem. However, we can imagine a situation in which 
the boy himself works with a diagram without an ‘expert’ helping him. In this case, 
we could talk about ‘self-scaffolding’ (cf. Bickhard 1992; Bickhard 2005; Granott 
2005; Mascolo 2005). Thus, the diagram can be interpreted as a ‘scaffold’ that the 
learner constructs to help himself in a situation that is too complex for him to cope 
with. 

Be it self-scaffolding or social scaffolding as in the Meno, the cognitive function 
the diagram fulfills in our example is based on the ten characteristics of diagrammatic 
reasoning I listed in the first section of this paper. Especially the clarification and 
coordination of confused ideas about the problem in question is crucial. If the boy in 
Plato’s example had clear knowledge of geometry, he could answer Socrates’ 
question without using a diagram. That means—coming back to our second 
problem—that we should clearly distinguish between knowing the four conditions of 
being disappointed listed above and something weaker than ‘knowing.’ Elsewhere, I 
suggested a distinction between ‘knowledge’ and ‘cognitive abilities’ to analyze more 
precisely what is going on in learning processes like the one described in the Meno 
(Hoffmann forthcoming-a). While ‘knowing something’ can be defined as being able 
to perform a certain activity—including the activity of formulating a proposition, or 
an argument—without being dependent on something which is given in the respective 
environment, a ‘cognitive ability’ would be an ability which is dependent on 
something else. This way, we could say that though the boy does not have knowledge 
of the rules and conventions of geometry and the principle of non-contradiction, he 
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has nevertheless the cognitive ability to clarify those rules, conventions, and 
principles by means of the diagram Socrates draws. The diagram, therefore, is an 
essential part of the boy’s cognitive system since—by definition—there is no 
cognitive ability without a corresponding object. 

Based on this terminological distinction we can say that the main goal of learning 
is the transformation of cognitive abilities into knowledge; the transformation of 
activities that are dependent on external support into those that are independent and 
‘abstract,’ so to speak. In our example, working with a diagram is crucial for this 
transformation. The process of diagrammatic reasoning is a process of 
disambiguation, clarification, and coordination of vague ideas.  

Let’s turn again to Plato’s text. The question regarding the side length of the 
doubled square is still unanswered. Motivated by Socrates’ pretty misleading hint that 
the ‘line on which the eight-foot square is based must then be longer than this one of 
two feet [AD in Figure 2], and shorter than that one of four feet [AE in Figure 2]’ 
(83d), the boy’s second suggestion is that it must be three feet long, which is exactly 
the middle between two and four feet. This time, Socrates uses the diagram only to 
show that ‘the whole figure’ of a square with a side length of three feet will be ‘three 
times three feet.’ Based on the boy’s knowledge that ‘three times three feet’ is nine 
feet, he realizes quickly that his second answer also was wrong (83e). 

Now, how can we solve the problem? Plato presents Socrates as a real master of a 
scaffolding technique, at least initially. By counting piece by piece the four equally 
sized squares that form as a whole the big square AGFE in Figure 2, he makes 
evident that ‘the whole figure’ is four times larger than the original square (84d,e). 
His emphasis on the fact that we get four squares when we need the size of two could 
have been a great scaffold to induce the idea that we only need to divide each of these 
four squares by its diagonal to produce the correct solution (cf. Figure 3). But 
Socrates has to prompt the boy again to get him on the right track: 

SOCRATES: Well then, how many times is the whole figure larger than this one?—Four times. 

SOCRATES: But we should have had one that was twice as large, or do you not remember?—I 
certainly do. 

SOCRATES: Does not this line from one corner to the other cut each of these figures in two? [He 
hints at BD, DH, HI, and IB in Figure 3]—Yes. 

SOCRATES: So these are four equal lines which enclose this figure? [BDHI]—They are. 

SOCRATES: Consider now: how large is the figure?—I do not understand. 
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SOCRATES: Within these four figures, each line 
cuts off half of each, does it not?—Yes. 

SOCRATES: How many of this size are these in 
the figure? [Triangles of the size of DBC in 
BDHI]—Four. 

SOCRATES: How many in this? [Triangles in 
ABCD]—Two. 

SOCRATES: What is the relation of four to 
two?—Double. 

SOCRATES: How many feet in this? [Square feet 
in BDHI]—Eight. 

SOCRATES: Based on what line?—This one 
[DB]. 

Figure 3: Doubling the square ABCD 

SOCRATES: That is, on the line that stretches from corner to corner of the four-foot figure?—
Yes.—Clever men call this the diagonal, so that if diagonal is its name, you say that the double 
figure would be that based on the diagonal?—Most certainly, Socrates. (Plato Men., 84e-85b) 

Obviously, the last lines of this dialogue are not really a good example for sensible 
scaffolding. However, answering the question by looking at the diagonals in the 16 
square feet figure is a genuine creative act. We could say that Socrates prepares this 
last step perfectly by constructing, first of all, Figure 2 and by emphasizing the fact 
that in this big figure we get four squares of the same size as the original one. But 
using this information in a creative way to solve the problem is something special. 

From the boy’s point of view, there are no further cognitive abilities that he needs 
in order to understand the correctness of Socrates’ solution beyond what we have 
discussed already. Based on what he knows about Euclidean geometry it is evident 
that Socrates’ approach solves the problem. The interesting question is, however, how 
it could be possible for him to find this answer without a tutor helping him. Let us 
assume he used a diagram like Figure 2 in a process of self-scaffolding. Based on 
what kind of cognitive conditions could it be possible for him to find the correct 
solution in a genuine creative act? 

Peirce offers a set of terminological suggestions that can be used here to describe 
activities that have both a methodological and a cognitive dimension (cf. Hoffmann 
2005a,  2005c,  forthcoming-b). His concept of a ‘theoric transformation’ would be 
useful to describe the change of perspective that is necessary to see already in Figure 
2 the possibility of the diamond-shaped square of Figure 3, and his notion of 
‘theorematic deduction’ might be helpful to name the process of performing ‘an 
ingenious experiment upon the diagram, and by the observation of the diagram, so 
modified, ascertains the truth of the conclusion’ (Peirce CP 2.267; cf. CP 7.204). For 
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Peirce, such an ‘ingenious experiment’ can be realized by introducing ‘auxiliary 
individuals into the argument’ like the diagonal in Figure 3 (Hintikka 1983 <1980>, 
113, cf. 109f.; Peirce EP II 96). However, all these terminological suggestions in 
themselves do not explain how it might be possible for the boy to perform something 
like a theoric transformation, or a theorematic deduction, in a way that the problem 
can be solved. 

Analyzing a historical example for a theoric transformation in projective 
geometry, Peirce emphasizes that the genuine creative step was possible in this case 
for somebody who was already ‘acquainted’ with looking at diagrams from a certain 
point of view (Peirce SEM III 310 f.; cf. Hoffmann 2005a: 206-214; for empirical 
evidence see Craig et al. 2002). Similarly, if somebody has already studied the role of 
diagonals in squares, this person would be best prepared to associate her or his 
knowledge with the problem in question. At this point, it makes sense to talk about 
mental models as a precondition of diagrammatic reasoning. But these are not internal 
replicas of the external diagrams we are constructing in diagrammatic reasoning, but 
certain units of structured experience we can use to develop certain perspectives on 
those diagrams. This way, a mental model would be a cognitive means to frame the 
perception of a diagram—or, generally, of a problem—in a certain way. Playing with 
those model-based perspectives might be the central cognitive condition of successful 
diagrammatic reasoning. 

3. Conclusion 
 
If we look at diagrammatic reasoning as a process in which an individual (or a group 
of individuals) constructs an external representation, and experiments with this 
representation playfully and creatively, in order to clarify, structure, and coordinate 
thinking processes, we can summarize our considerations regarding cognitive 
conditions of diagrammatic reasoning as follows. Most important might be that in 
diagrammatic reasoning we are facing an interplay between an individual’s internal 
cognitive processes and the objective rules and conventions of a representation 
system she or he chooses to construct a diagram. These rules are not—at least not 
during the process of diagrammatic reasoning itself—at the individual’s disposal; 
they are anchored in the general ways a certain community or culture uses this system 
of representation. This externality, or objectivity, of the representation system is 
crucial for the possibility of learning by means of diagrammatic reasoning. Only if we 
accept the objectivity and constraining power of these rules and conventions can we 
be challenged by what turns out as necessary implications of an experiment we 
perform with our diagram. Only if the boy in Plato’s Meno accepts what Socrates 
shows at his diagram can he see the disillusioning contradiction between his 
expectations and this outcome. It is the rationality implemented in Euclidean 
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geometry itself that makes that a diagram, as Kathleen Hull (1994) puts it, ‘becomes 
the something (non-ego) that stands up against our consciousness’; ‘reasoning 
unfolds when we inhibit the active side of our consciousness and allow things to act 
on us’ (287).  

My analysis of Plato’s example of how to double a square illuminated in particular 
two theses: first, that the cognitive ability necessary to perform diagrammatic 
reasoning, and to develop creative problem solutions, can be reconstructed as a more 
or less complex hierarchy of further cognitive abilities and forms of knowledge 
(which could partly be reconstructed as mental models) that includes accepting the 
principle of non-contradiction, the ability to listen to, and to understand, experts, 
knowledge of Euclidean geometry, experience with the role of diagonals in squares, 
and so on (cf. Hoffmann & Roth 2004); second, that the role of diagrammatic 
reasoning can only be understood adequately if we conceive it as part of cognitive 
processes whose central feature is the clarification, disambiguation, and coordination 
of confused and vague ideas which must be given already. This way, diagrammatic 
reasoning takes place in those forms of cognition whose essence can best be captured 
by the concept of ‘distributed cognition.’ 
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