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Abstract 

From the early 2010s, policymakers and firms in advanced industrial economies began 

introducing approaches to systemically exploit manufacturing and industrial data (the notion 

of cyber-physical convergence). Three innovation concepts were especially highlighted: Smart 

Manufacturing, Industrial Internet and Industrie 4.0. In parallel, academics have employed 

these concepts in numerous ways to promote their work. Despite this broad interest, precise 

definition and delineation of the cyber-physical convergence research domain have received 

little attention. Also missing is systematic knowledge on the interactions of these concepts with 

research trajectories. This paper fills these gaps by operationalising a newly constructed 

definition of convergence, and delineating the associated research domain into five data-centric 

capabilities: Monitoring, Analytics, Modelling-and-Simulation, Transmission and Security. A 

bibliometric analysis of the domain is then performed for 2010–2019. There are three findings. 

First, Analytics and Security have assumed strategic positions within the domain, coinciding 

with a “strategic turn” in policy. Second, backed by concerted policy and funding efforts, 

growth in Chinese scientific output has outpaced key competitors U.S. and Germany. Finally, 

the patterns of promoting their works in terms of the three concepts differ significantly among 

U.S.-, Germany- and China-based authors, which mirrors the different policy discourses 

prevalent in those countries. 

 

Keywords: Industrie 4.0; Industry 4.0; Smart Manufacturing; Industrial Internet; Digital 

Manufacturing
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1. Introduction 
 
Over the last decade, one trend had stood out in discussions about the future of manufacturing 

and industrial sectors: the integration of cyber space (as embodied by the Internet and 

computational capabilities) and physical machinery, resulting in what is called cyber-physical 

convergence (Conti et al., 2012, Ezell, 2018, O’Sullivan et al., 2017). This combination of the 

digital and the material has been seen by policymakers and firms in advanced industrial 

economies as central to making tangible gains on innovation, productivity and competitiveness 

(Aaronson, 2019, Bonvillian, 2012, Pisano and Shih, 2009). Drawn by such prospects, three 

concepts were coined and championed in the early 2010s – all loosely under the banner of 

innovation policy: “Smart Manufacturing” as a U.S. Government initiative to revitalise the 

country’s manufacturing sector and strengthen national security (PCAST, 2012); the German 

public-private coordinated “Industrie 4.0” (also known as Industry 4.0”), which mirrors 

collective efforts by firms, trade unions, universities and others to strengthen Germany’s 

economy (Kagermann et al., 2013); and the “Industrial Internet”, advanced by U.S. private 

sector firms to boost profitability under challenging economic conditions (Evans and 

Annunziata, 2012). 

 

A common focus of these concepts is to set enabling conditions, including those that influence 

the production of scientific knowledge along desired trajectories, for furthering policy goals. 

Policy interest has been matched by concurrent growth in academic research, where these 

concepts have been used to frame a list of advanced technologies including augmented reality 

for simulation (Angrisani et al., 2019), 3D printing for digital fabrication (Ceruti et al., 2019) 

and blockchain for industrial cybersecurity (Mazzei et al., 2020). Evidence of the increasing 

scholarly attention being paid to these concepts is also observed in the manner in which they 

are promoted as a positive and desired attribute of an object of study. For instance, computer 

scientists have used them in connection to applications of data analytics to improve anomaly 

detection (Stojanovic et al., 2016), support remote maintenance (Masoni et al., 2017) and 

measure energy consumption (Qin et al., 2017). Operations researchers have applied them to 

discuss the advantages of lean production (Mrugalska and Wyrwicka, 2017) and mass 

customisation (Torn and Vaneker, 2019). Meanwhile, management scholars have associated 

these concepts with diverse strategic aspects in manufacturing, including firms’ dynamic 

capabilities (Felsberger et al., 2020), business model innovations (Frank et al., 2019) and 

innovation ecosystems (Benitez et al., 2020). 
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Yet, while researchers have broadly drawn on Smart Manufacturing, Industrie 4.0 and 

Industrial Internet policy concepts to underpin their work, there has been little systematic work 

to define and delineate these particular framings, how they overlap or differ, and how they 

relate to wider policy trends and interventions. Attempts by the scientometric community to 

evaluate scientific outputs associated with one or more of these concepts have tended to be ad 

hoc and high-level in scope. For example, one study by Muhuri et al. (2019) queries “industry 

4.0” and then performs simple descriptive bibliometrics to analyse literature trends. Trotta and 

Garengo (2018) expand the search query to include “smart manufacturing”. A  recent paper by 

Meindl et al. (2021) provides a broad overview of research trends associated with four “smart 

dimensions of Industry 4.0, including manufacturing. These approaches, whilst useful, are not 

robustly able to measure developments and discreet patterns in cyber-physical convergence 

research output. In part, this reflects a lack of conceptual and boundary consensus regarding 

the notion of convergence itself. 

 

Systematically defining cyber-physical convergence is not just an academic exercise. How we 

define it will influence the approach to evaluate growth and trajectory of research output, which 

has an important bearing on public and private policy goals (Boswell and Smith, 2017). In this 

paper, we make three contributions: definitional, methodological and measurement. We put 

forward a newly constructed definition of cyber-physical convergence by drawing on a set of 

foundational policy and technical documents. Reviewing these documents allows us to 

examine the technological underpinnings of Smart Manufacturing, Industrie 4.0 and Industrial 

Internet, and define cyber-physical convergence in a manner that is consistent with these 

underpinnings. Our definition focuses at the level of data generated in manufacturing and 

industrial processes. With this approach we can separate out signifiers associated with the three 

concepts. Next, we operationalise this definition using natural language processing methods. 

In doing so, we set out, for the first time to our knowledge, a boundary around the cyber-

physical convergence research domain. While this boundary should not be viewed as 

impermeable, it sufficiently describes and sensitises the domain to the influence of the 

concepts. This results in the identification and elucidation of five subfields – each associated 

with a specific data-centric capability: (i) Monitoring, (ii) Analytics, (iii) Modelling-and-

Simulation, (iv) Transmission and (v) Security. Our third contribution involves the evaluation 

of bibliometric performance indicators in the period between 2010 and 2019 to identify 

developments and patterns in research outputs related to cyber-physical convergence. 
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The paper is structured as follows. Section 2 introduces the notion of cyber-physical 

convergence and defines it according to the three concepts. In Section 3, the definition is 

operationalised, subfields are identified, and results are analysed. Section 4 presents discussion 

and concluding remarks. 

 

2. Cyber-physical convergence: Concepts and definitions 
 
2.1. A brief overview of cyber-physical convergence and its importance 

Cyber-physical convergence is related to a broader concept of technological convergence, 

which defines a state where boundaries between different technologies or industrial sectors 

blur (Gauch and Blind, 2015), leading to “outcomes that in their performance exceed the sum 

of their parts” (Hacklin et al., 2009). An early mention of cyber-physical convergence in 

academic research is by Conti et al. (2012) who characterise it as a scenario where physical 

components pervasively interact with the cyber space via sensing, computing and Internet 

communication components. The authors argue that as devices (such as smartphones) become 

more pervasive, they enable the monitoring, collection and analysis of user data to better 

understand human behaviours. The key feature of this characterisation is represented by the 

term ‘pervasive’, which refers to the ability to embed computational capability into physical 

objects. That is to say, Conti et al’s definition directly draws on the idea of ‘ubiquitous 

computing’, most often associated with former Xerox computer scientist Mark Weiser. Weiser, 

in his seminal article “The Computer for the 21st Century” (1991) argued that “specialized 

elements of hardware and software, connected by wires, radio waves and infrared, will be so 

ubiquitous that no one will notice their presence”. The modern computer, therefore, would 

weave into the fabric of everyday human life and become indistinguishable from it. In recent 

years, Conti et al. (2017) have extended this last point by explicitly including humans (“Internet 

of People”) in their convergence narrative. 

 

The notion of cyber-physical convergence is now increasingly invoked in manufacturing and 

industrials contexts. O’Sullivan et al. (2017, pp. 336-338) describe three different dimensions 

of convergence: (a) integration of enabling technologies (such as Information and 

Communication Technology (ICT), nanotechnology, biotechnology and advanced materials) 

in manufacturing; (b) hybrid manufacturing systems built on a combination of disparate 

technological foundations, for example, mechatronics (sensing, control, measurement, etc.) 
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and materials engineering (pressing, extrusion, fabrication, etc.); and (c) application of ICT to 

enable vertical integration of production lines and units, horizontal integration of value chains, 

and integration of end-to-end engineering activites across the life-cycle of a product. All three 

dimensions stress the importance of the Internet in linking physical components (“Internet of 

Things” or IoT) distributed throughout value chains, allowing efficient product development, 

logistics management and services. Jeschke et al. (2017, p. 7) specifically add computer science 

(data analytics and artificial intelligence) and ergonomic (human-machine interactions) 

functionalities to the scope of cyber-physical convergence. Yet another interpretation is the 

convergence of Operational Technologies or OT (technologies to control, monitor and 

automate industrial processes, e.g., Supervisory Control and Data Acquisition) with 

Information Technologies or IT (data networking, infrastructure and software technologies, 

e.g., Enterprise Resource Planning), resulting in a plant-to-enterprise integration (Davis et al., 

2020). 

 

A broader, macro-level sense of the convergence phenomenon is provided by Fort et al. (2018). 

The authors, in their study on U.S. manufacturing employment, highlight the increase of firms’ 

adoption of computers and electronic networks (that is, the Internet and electronic data 

exchanges) through the 2000s. In particular, the proportion of plants buying computers 

increased significantly in 2002. This was accompanied by an analogous growth in the adoption 

of electronic networks to control or coordinate product shipments. Fort (2017) further indicates 

that U.S. plants’ adoption of electronic networks not just involved the Internet, but also the 

integration of electronic communication in production processes, resulting in higher labour 

productivity than non-adopters (Fort et al., 2018). These observations are consistent with a 

large body of macroeconomic research which has shown that application of ICT in the U.S. 

nonfarm business sector (includes manufacturing) was a major driver of labour productivity 

growth between 1995 and 2004 (see, for example, Jorgenson et al., 2008). By comparison, 

major European economies, in particular, Germany, experienced lower labour productivity 

gains from ICT in the decade after the mid-1990s (Eicher and Roehn, 2007). More recently, 

the U.S., European and other advanced economies have all experienced slow productivity 

growth (Andrews et al., 2016). To reverse such trends, there have been suggestions of greater 

investments in ICT and its pervasive adoption in manufacturing and industrials (Miller and 

Atkinson, 2014, Tassey, 2008, Tassey, 2010). These suggestions are emphatically supported 

in the characterisation of cyber-physical convergence according to Smart Manufacturing, 
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Industrie 4.0 and Industrial Internet (Belton et al., 2019, Evans and Annunziata, 2012, Horst 

and Santiago, 2018). 

 

2.2. Technological underpinnings of the three concepts 

We now focus on the technological underpinnings of cyber-physical convergence as advanced 

in the three concepts. To do this, we identified, selected and reviewed a set of policy and 

technical literature (Appendix 1). We consider this literature to be foundational because: (i) it 

seeks to frame the concepts through the lens of their original proponents; and (ii)  it identifies 

and describes the key technological steps needed to achieve convergence generally, as well as 

in manufacturing and industrial settings. 

 

Smart Manufacturing materials include reports produced or commissioned by three U.S. 

Government sources: (a) the President’s Council of Advisors on Science and Technology 

(PCAST) – a science, technology and innovation policy advisory group comprising of experts 

from industry and academia; (b) the Clean Energy Smart Manufacturing Innovation Institute 

(CESMII) – a public-private consortium within the U.S. Department of Energy with the 

mandate to make manufacturing more energy-efficient through the use of cyber-physical 

capabilities; and (c) the National Institute of Standards and Technology (NIST), which 

develops technical standards and measurements crucial to a wide range of industries. Resources 

related to Industrial Internet are those published by General Electric (GE), a U.S. industrial 

conglomerate, widely credited with coining the concept, and the Industrial Internet Consortium 

(IIC), an open membership organisation co-founded by GE to catalyse the adoption of 

Industrial Internet. Industrie 4.0 documents are those by the German National Academy of 

Science and Engineering (Acatech), whose members have played a fundamental role in 

championing the Industrie 4.0 narrative within and beyond Germany. After reviewing this 

compendium of literature, we find that although Smart Manufacturing, Industrie 4.0 and 

Industrial Internet are guided by different rationales, theorising and practices (the discussion 

of which is beyond the scope of this paper), they share a common technological base. The next 

section discusses this in more details. 

 

According to NIST (Lu et al., 2016), the technological building block of Smart Manufacturing 

(called an Smart Manufacturing Ecosystem) is framed at an organisational level. It covers the 

entire range of devices, machines and systems within a firm’s engineering, production and 

management functions. Each function generates large amounts of data which is then exploited 
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through a three-step process: acquiring data from devices and machines of diverse supply chain 

members in different locations; contextualising and analysing the data in cloud-based 

environments; and visualising and reporting insights to achieve measurable results, for 

example, optimisation of an additive manufacturing process (CESMII, 2019, Miller, 2018, 

Schneider, 2018). In a NIST-commissioned study, Gallaher et al. (2016, p. 45) also support a 

similar data-centric workflow that models, senses, transmits, analyses, communicates and takes 

action on data. Hence, “in its simplest form, SM turns data from the manufacturing process 

into actionable knowledge.” 

 

The technolological unit of Industrie 4.0 (called Cyber-Physical System) is based on a systems 

level, wherein software is “embedded” into hardware systems (Geisberger and Broy, 2015, pp. 

23-26, Hellinger and Seeger, 2011). These systems perform a series of data-driven activities: 

produce and acquire physical data from the environment; process this data to interpret a 

situation in relation to pre-defined objectives; and use the knowledge to make decisions in real 

time (Geisberger and Broy, 2015, p. 64). In comparison, Industrial Internet is characterised at 

an architectural design level called Industrial Internet System. It consists of three tiers that are 

interlinked via the Internet: the edge tier collects data from on-field devices and sends it to the 

platform tier, where the data is consolidated and cleansed. Industrial analytics is then applied 

to the processed data at the enterprise tier to generate insights and inform business activities 

(Lin et al., 2015, p. 37). 

 

Where these different concepts overlap, then, is a common framing that data is the fundamental 

driver of cyber-physical convergence (Figure 1). This interpretation of convergence follows 

the etymology of the word which comes from the Latin convergere – to come together, to 

connect machines and boost productivity by exploiting the data they produce. More 

specifically, in all three concepts, there is an emphasis on a set of distinct, yet overlapping (to 

a certain extent) capabilities, comprising data flows between different systems, beginning with 

sensing to collect data all the way through to when it is analysed to generate insights for 

decision-making. These data-centric capabilities, according to Smart Manufacturing, Industrial 

Internet and Industrie 4.0, collectively embody and define convergence (Table 1). 
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Figure 1: The three concepts overlap at a common data-centric framing of cyber-physical 
convergence. 

 

An important implication of these discussions is that convergence does not equate with new 

technologies. Advanced technologies such as augmented reality, 3D printing or blockchain will 

not necessarily convey convergence unless the data they produce is effectively harnessed and 

analysed to, say, drive productivity. Conversely, even legacy machinery can be distinguished 

as convergent if they interact effectively with the cyber space (Kagermann et al., 2013, 

Schneider, 2018). Given these arguments, we conceive of cyber-physical convergence as a 

“data-centric workflow that makes use of specific capabilities, starting with data acquisition 

from physical sources, and then continuing through to the generation of actionable insights”. 

This definition disentangles random signifiers for the purpose of informing our text-mining 

and bibliometric research design.

DATA

Industrie 4.0
(Cyber-Physical 

System)

Cyber-Physical Convergence

Industrial Internet
(Industrial Internet 

System)

Smart Manufacturing
(Smart Manufacturing 

Ecosystem)

Figure 1: The three concepts overlap at a common data-centric 

framing of cyber-physical convergence.
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Concept and Authors/Study Definition (adopted) 

Smart Manufacturing  

Gallaher et al (2016, p. 27) 

conducted an economic and 

technological assessment study 

commissioned by the NIST to 

examine the role that NIST 

could play to accelerate Smart 

Manufacturing development 

and adoption in the U.S. 

Smart Manufacturing comprises six capability areas: (a) 

modeling and data creation to support design, testing 

and automation; (b) sensing and monitoring to collect 

real-time information on processes; (c) transmitting 

information across multiple platforms and levels of the 

supply chain; (d) analysing data and trends to support 

real-time process control and management; (e) 

communicating information to decision makers to 

support efficient and/or automated analysis; and (f) 

determining and implementing required action in a 

timely and/or closed-loop setting. 

Industrial Internet  

Lin et al (2015, p. 26) of the 

IIC in a technical paper titled 

“Industrial Internet Reference 

Architecture” elaborated the 

functional dimensions of the 

Industrial Internet concept as a 

set of activities that can 

transform industrial systems on 

a global scale.  

Industrial Internet is enabled by: (a) collecting sensor 

data from across industrial systems; (b) applying 

analytics, including models developed through machine 

learning, to these data, so as to gain insight to a 

business’s operations; and (c) using these insights to 

help improve decision-making and optimize operations 

globally through automatic and autonomous 

orchestration. 

Industrie 4.0  

Geisberger and Broy (2014, p. 

64) describe the technological 

basis of Industrie 4.0 as part of 

the “Integrated Research 

Agenda Cyber-Physical 

Systems” project initiated by 

the Acatech and funded by the 

German Federal Ministry of 

Education and Research 

(BMBF). 

Cyber-physical convergence involves the ability of 

manufacturing systems to: (a) capture physical data 

from the environment in parallel via sensors and to 

merge and process this data – and to do so both locally 

and globally and in real time; (b) use the information 

that they have gathered to interpret the situation in terms 

of predefined goals; (c) detect, interpret, deduce and 

forecast malfunctions, problems and threats; (d) 

integrate, regulate, control and interact with components 

and functions; and (e) carry out globally distributed and 

networked control and regulation in real time. 

Table 1. Definitions of cyber-physical convergence according to the three concepts.
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3. Text-mining and bibliometrics 
 
In this section, we operationalise our definition of cyber-physical convergence. To do this, 

however, we need to address a more basic question – how exactly do researchers working in 

the domain use the term ‘data’ in their publications? This question is pertinent because it 

concerns translating the data-centric capabilities of Table 1 into a controlled lexicon of 

keywords for use in bibliometric analysis. As emerging scientific domains cannot be accurately 

described in terms of random signifiers, building such a lexicon helps overcome delineation 

and measurement issues (Oldham et al., 2012). 

 

3.1. Building a lexicon of relevant keywords 

Our lexicon-building strategy combines elements from different scientometric approaches in 

science and technology. We extract benchmark publications from the scientific publication 

database Scopus and analyse them with natural language processing tools to produce an initial 

set of mid- and high-frequency keywords. Capturing high-frequency keywords from 

publications is an effective means to operationalise emerging technological domains (Hu and 

Rousseau, 2015, Shapira et al., 2017). Mid-frequency keywords play a complementary role in 

this process because they reveal not-too-common words in a specific field (Luhn, 1958). The 

relevance of these keywords with respect to the publication corpus is determined by applying 

a statistical measure called term frequency-inverse document frequency (TF-IDF), and also by 

checking their meaningfulness in regards to specific word combinations (phrases). TF-IDF 

combines both keyword popularity and discrimination to evaluate how important a term is to a 

publication in a corpus (Chen and Xiao, 2016). Our analysis finds a set of keywords that are 

not only cyber-physical convergence-specific, but also highlights the underlying capabilities 

that are contributing to it. Next, we test them for their specificity to obtain complementary 

keywords, which are then added to the set. Thus, following Mogoutov and Kahane (2007), we 

expand the lexicon using a modular methodology (Figure 2) that better defines the research 

domain, while fencing out non-relevant publications. 
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Figure 2: Modular lexicon building methodology. See sections 3.1.1 and 3.1.2 for details on Query 1 

and Query 2. 

 

3.1.1. Retrieving benchmark publications 

It must be noted that authors in different disciplines have rapidly clutched on the three concepts 

to promote their research. So, to navigate the search space and retrieve papers that explicitly 

discuss data-related ideas in the context of Smart Manufacturing, Industrial Internet and 

Industrie 4.0, we used a first strategy Query 1 (Title = data AND (“industrie 4.0” OR “smart 

manufacturing” OR “industrial internet”)) in Scopus. We selected journal and conference 

articles in English and German languages from 2010 to 2020 (Scopus provides English 

translation of a limited number of German publications). This corpus was built in June 2020. 

We use the term ‘data’ to consider a wide range of data types, transactions and sources that are 

associated with this area of activity. For example, data can include sensor measurements about 

physical elements (e.g. temperature and pressure) and production efficiency (e.g. energy 

performance). Our search returned 118 publications, consisting of all available publications 

that demarcated these concepts using ‘data’. We then manually checked the titles, abstracts and 

keywords of the publications, and removed irrelevant ones. The final cleaned dataset contains 

96 publications. 

 

3.1.2. Identifying relevant keywords 

The titles, abstracts and keywords of the cleaned dataset were analysed using the content 

analysis tool QDA Miner in combination with its sister text-mining module WORDSTAT. 

Content analysis has been used as part of broader scientometric strategies to evaluate progress 

and gaps in emerging technological domains (Rezaeian et al., 2017). QDA Miner provides 

various statistics such as TF-IDF, term frequency and the number of publications in which 

Figure 2: Modular lexicon building methodology. See text for discussion of Query 1 and Query 2.
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terms are found. We extracted individual words and phrases along with their statistical 

measures. The raw keyword set contained a total of 300 unique keywords. These were 

manually screened to remove nonsensical and trivial terms, resulting in a parent set of 77 

keywords. 

 

These keywords were then subjected to additional processing as follows. First, complementary 

terms related to the concepts in the parent set – “industry 4.0”, “cyber-physical”, “iiot”, 

“industrial iot” – were grouped together. To these, we added the terms “factory” and “shop 

floor” to capture papers that express the same interpretation of convergence, even though these 

papers may not explicitly use the concepts in their title, abstract or keywords. Combining all 

these terms expands our search string to (“industrie 4.0” OR “industry 4.0” OR “smart 

manufacturing” OR “cyber manufacturing” OR industrial internet” OR “iiot” OR “industrial 

iot” OR “cyber physical” OR “cyberphysical” OR “factory” OR “shop floor”). This string 

(Query 2) represents a reasonable search space from which papers that are judged to embody 

convergence can be extracted.  

 

Second, we selected terms to operationalise convergence. We classified the remaining 

keywords in the parent set according to their frequencies (ranging from 7 to 80) and TF-IDF 

scores (between 8 and 48). These values were calculated in the above text mining process for 

all terms in all of the documents in the corpus. We selected terms with frequencies equal to or 

greater than 30 and TF-IDF weights equal to or greater than 24 because these values were 

judged to reasonably cover the scale and scope of the convergence domain. Also, because the 

terms are distinctively frequent, we viewed them to represent important topics within the 

corpus. Based on these criteria, eight keywords were selected: “analytics”, “transmission”, 

“network”, “security”, “model”, “monitoring”, “sensor” and “communication”, each 

representing a specific data-centric capability. The meanings of these keywords were then 

examined in relation to specific phrases, and also by manually checking titles and abstracts. 

Association between specific words mean that a distinct aspect of the domain is being 

discussed. Thus, phrases like “data monitoring”, “sensing data”, “data acquisition”, “data 

analytics”, “data modelling”, “data transmission” and “secure communication” (Table 2) help 

place the keywords in the specified context, and categorise them into five subfields: 

Monitoring, Analytics, Modelling, Transmission and Security.
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Table 2: Subfields with keywords and phrases. 

 

3.2. Enriching the lexicon at subfield levels 

These subfields are consistent with the data-centric capabilities indicated in Table 1 (Security 

is a notable addition). Despite this congruence between lexical and conceptual components, we 

argue that there is scope for it to be expanded at a subfield level to more comprehensively 

operationalise convergence. To do this, we pursued a modular query enrichment methodology 

Subfield Keyword 
Relevant phrases 

(Examples) 

No. of 

publications 

with this 

keyword 

Total 

frequency 

of the 

keyword 

TF-IDF 

score of 

the 

keyword 

Monitoring 

Monitoring 

Data monitoring,  

Tool wear 

monitoring 

12 31 27.9 

Sensor 

Sensing data,  

Data collection 

(using sensors),  

Data acquisition 

(using sensors) 

14 33 27.4 

Analytics Analytics 

Data analytics,  

Industrial 

analytics 

24 65 47.8 

Modelling Model 

Data modelling,  

Manufacturing 

process modelling 

20 42 28.4 

Transmission 

Transmission 

Data 

transmission,  

Real-time 

transmission 

10 35 34.2 

Network 

Wireless network,  

Software-defined 

networking 

22 51 32.4 

Communication 

Data 

communication,  

Wireless 

communication 

16 32 24.8 

Security Security 

Secure 

communication,  

Security in 

Industrie 4.0 

15 38 30.5 
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similar to Mogoutov and Kahane (2007), whereby subfield keywords were extracted in another 

round of querying in Scopus and then tested for inclusion into the lexicon. We briefly define 

the subfields and discuss the results below. 

 

Monitoring: Monitoring is the starting point in Smart Manufacturing and involves sensing to 

collect data on physical conditions and industrial processes (Gallaher et al., 2016, Schneider, 

2018). Similarly, monitoring is considered as a foundational capability in an Industrial Internet 

infrastructure because it facilitates the reading of data from sensors (Lin et al., 2015, p. 26). 

Data collected by sensors is then used to support subsequent applications like analytics and 

modelling (Gallaher et al., 2016, Wu et al., 2017). However, data collection is not just limited 

to sensors – it is also gathered from other sources, including traditional automation equipment 

(e.g. supervisory control and data acquisition systems) as well as more advanced human-

machine interfaces (such as augmented reality devices) (see, for example, a review of data 

collection means and methodologies by Ćwikła (2014)). We tested the keywords “monitor*” 

and “sens*” by repeating steps 3.1.1. (using query 2) and 3.1.2., and added two relevant 

keywords to the lexicon: “acquisition” and “collection” (examples of usage of the selected 

keywords in titles are shown below). 

 

Additional 

keyword 

Scopus search query and publication example(s) 

(TITLE (“monitor*” OR “sens*”) AND TITLE ABS (Query 2)) 

Acquisition 
Online data acquisition and analysis using multi-sensor network system for 

smart manufacturing (Ohannessian et al., 2019) 

Collection 
Cloud-enabled Smart Data Collection in Shop Floor Environments for 

Industry 4.0 (Bosi et al., 2019) 

 

Analytics: According to Industrial Internet, data analytics encompass data science capabilities 

to “transform and analyse massive amounts of data from sensors to extract useful information 

that can deliver specific functions, give operators insightful information and recommendations, 

and enable real-time business and operational decisions” (Lin et al., 2015, p. 83). We pursued 

the approach discussed above, using “analytics” in a Scopus search query. After testing for 

statistically relevant words, we added the keywords “learning” (as in machine learning and 

reinforcement learning), “neural network” and “intelligence” (as in artificial intelligence) to 

our lexicon because they are frequently used in regards to analytic solutions to enhance 

manufacturing processes. Data analytics in manufacturing includes a range of machine learning 
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techniques (Wuest et al., 2016), which is a branch of artificial intelligence (Lechevalier et al., 

2014). One of the most popular machine learning approaches is artificial neural networks 

(Schwabacher and Goebel, 2007), that can be used to build predictive models using large 

volumes of manufacturing data (Wu et al., 2017). 

 

Additional 

Keyword 

Scopus search query and publication example(s) 

(TITLE (“analytics”) AND TITLE ABS (Query 2)) 

Learning 
Machine Learning approach for Predictive Maintenance in Industry 4.0 

(Paolanti et al., 2018) 

Neural 

network 

Cyber-based design for additive manufacturing using artificial neural 

networks for Industry 4.0 (Elhoone et al., 2020) 

Intelligence 
Sustainable industrial systems within kernel density analysis of artificial 

intelligence and industry 4.0 (Soebandrija et al., 2018) 

 

Modelling: Modelling includes operational research techniques that have long been used in 

manufacturing (Greasley, 2005, Smith et al., 1994) to “understand the states, conditions and 

behaviors of the systems under control and those of peer systems by interpreting and 

correlating data gathered from sensors and peer systems” (Lin et al., 2015, p. 29). Virtual 

models built from sensor data provide valuable insights into existing or planned systems and 

thus enable better decision-making during activities such as shop floor layout optimisation 

(Eklin et al., 2009), production process control (Iassinovski et al., 2008) and inventory control 

(Rezg et al., 2005). We replicated the above search approach using “model*” as query and 

found one statistically relevant keyword “simulation”. Simulation, often used as an 

interchangeable term with modelling, projects a real-world system in a virtual form (such as 

interactive 3D charts) to provide interpretative views of the system under different conditions 

and constraints and hence, support decision-making (Kibira et al., 2015). Discrete event 

simulation is arguably the most popular operational research technique used in industrial and 

manufacturing applications (Greasley and Edwards, 2019). While terms such as augmented 

reality, virtual reality and visualisation did not reach the threshold to be separately listed, these 

technologies are contained in modelling and simulation (where papers including these 

keywords are captured using the Scopus search query), particularly in papers concerned with 

simulating physical and virtual environments. 
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Additional 

Keyword 

Scopus search query and publication example(s) 

(TITLE (“model*”) AND TITLE ABS (Query 2)) 

Simulation 
An Integrative User-Level Customized Modeling and Simulation 

Environment for Smart Manufacturing (Kim et al., 2019) 

 

Transmission: Ubiquitous data transmission serves as the common thread that binds the entire 

spectrum of cyber-physical convergence capabilities, from data sensing to analysis and 

modelling (Gallaher et al., 2016, Lin et al., 2015). We searched for publications using 

“transmi*”, “network*” and “communicat*”. The results were text mined as above, leading to 

the inclusion of “wireless” to our lexicon. Authors working in the domain use 

“communication” as a broad capability that concerns the transmission of data among 

distributed hardware (e.g. sensors and actuators) and software resources through the 

application of wireless communication protocols and associated technologies such as Zigbee, 

Bluetooth and 6LowPAN (see Meng et al. (2016) for an overview on machine-to-machine 

communication for industrial applications). 

 

Additional 

Keyword 

Scopus search query and publication example(s) 

(TITLE (“transmi*” OR “network*” OR “communicat*”) AND TITLE 

ABS (Query 2)) 

Wireless 
Wireless Networked Control Systems with Coding-Free Data Transmission 

for Industrial IoT (Liu et al., 2019) 

 

Security: Security encompasses a plethora of cybersecurity-related concepts, technologies and 

practices to safeguard critical manufacturing assets (ENISA, 2018). Although security is not 

explicitly indicated in the definitions of cyber-physical convergence in Table 1, it has come to 

form a fundamental pillar in all three concepts. According to Industrial Internet, “security is 

the condition of the system being protected from unintended or unauthorized access, change 

or destruction” (Schrecker et al., 2016, p. 16). Security is the key system characteristic that 

most affects the trustworthy treatment of Industrie 4.0 data and protection from cyber attacks 

(Jänicke et al., 2016). We tested the keyword “secur*” as above and added “attack” to the 

lexicon (Note: Although it has a negative connotation, “attack” was identified as relevant and 

popular in our text-mining approach because researchers use it in different security-related 

contexts: “to block an attack”, “encryption-based cyber attack” or “securing machines against 

attacks”). 

 



18 
 

Additional 

Keyword 

Scopus search query and publication example(s) 

(TITLE (“secur*”) AND TITLE ABS (Query 2)) 

Attack 
Energy-Based Detection of Defect Injection Attacks in IoT-Enabled 

Manufacturing (Monroy et al., 2018) 

 

Our modular approach, thus, yields a total of 16 keywords (Figure 3) that collectively delineate 

the cyber-physical convergence research domain. There were other keywords we considered 

but did not add to our lexicon because they were judged to be adequately captured by other 

keywords. For example, the term “predictive” is often used in the contexts of “predictive 

models” and “predictive analytics”. Our approach also does not take into account technical 

details of specific capabilities, unless they match our mid-to-high frequency and TF-IDF 

selection criteria. As a case in point, we include “learning” in analytics but drop related 

keywords such as “linear regression”. We are aware that our keyword selection leaves out a 

number of terms that others may consider important. The fact, however, remains, that our 

approach builds on the notion of convergence as characterised in Table 1 and operationalises 

it with reasonable precision for the next stage of bibliometric analysis. 
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Figure 3: Subfield keywords to operationalise cyber-physical convergence and delineate research 
domain. See section 3.1 for lexicon-building methodology. 
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Figure 3: Subfield keywords to operationalise cyber-physical convergence and 

delineate research domain. See text for discussion of the lexicon-building 

methodology.
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3.3. Bibliometric search 

The keywords were consolidated into a bibliometric search approach (Table 3) applying 

appropriate exclusion terms to remove extraneous records. Further discussions on how we 

added exclusion terms are discussed in Appendix 2. 

 

Subfield Search Strategies 

Monitoring 

TITLE (“monitor*” OR “sens*” OR “collect*” OR “acqui*”) AND 

TITLE-ABS (Query 2) AND NOT TITLE-ABS (“sensitive” OR 

“sensual” OR “collective*” OR “pollut*” OR “water” OR “agricultur*” 

OR “oil” OR “sewage” OR “waste” OR “bacteri*” OR “coli”  OR 

“bacillus” OR “cultur*” OR “microb*” OR “literature” OR “survey” OR 

“review” OR “overview” OR “trend” OR “challenge” OR “opportunit*” 

OR “cities”) 

Analytics 

TITLE (“analytics” OR “learning” OR “neural network” OR 

“intelligence”) AND TITLE-ABS (Query 2) AND NOT TITLE-ABS 

(“skills” OR “educat*” OR “curricul*” OR “school” OR “training” OR 

“module” OR “course” OR “graduat*”  OR “pollut*” OR “water” OR 

“agricultur*” OR “oil” OR “sewage” OR “waste” OR “bacteri*” OR 

“coli”  OR “bacillus” OR “cultur*” OR “microb*” OR “literature” OR 

“survey” OR “review” OR “overview” OR “trend” OR “challenge” OR 

“opportunit*” OR “cities”) 

Modelling-

and-Simulation 

TITLE (“modelling” OR “simulat*”) AND TITLE-ABS (Query 2)  AND 

NOT TITLE-ABS (“pollut*” OR “water” OR “agricultur*” OR “oil” OR 

“sewage” OR “waste” OR “literature” OR “survey” OR “review” OR 

“overview” OR “trend” OR “challenge” OR “opportunit*” OR “cities”) 

Transmission 

TITLE (“transmi*” OR “communicat*” OR “network*” OR “wireless”) 

AND TITLE-ABS (Query 2) AND NOT TITLE-ABS (“sens*” OR 

“neural” OR “bacteri*” OR “coli” OR “bacillus” OR “cultur*” OR 

“microb*” OR “literature” OR “survey” OR “review” OR “overview” 

OR “trend” OR “challenge” OR “opportunit*” OR “cities”) 

Security 

TITLE (“secur*” OR “attack*”) AND TITLE-ABS (Query 2) AND NOT 

TITLE-ABS (“literature” OR “survey” OR “review” OR “overview” OR 

“trend” OR “challenge” OR “opportunit*” OR “cities”) 

Table 3: Bibliometric search strategies with subfield inclusion and exclusion terms. 
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While cyber-physical convergence can be effectuated across different sectors (e.g., retail and 

social media) and organisational functions (e.g., digital marketing), the objective of this paper 

is to investigate the convergence research domain associated with manufacturing and 

industrials. Our scope of manufacturing and industrials includes the following: (1) sectors: 

automotive (mobility), aerospace and defence, power grids, oil and gas, industrial machinery, 

and general engineering and production; and (2) functions: manufacturing processes, and 

factory and shop floor processes). We implemented this scope in our paper by: (a) structuring 

Query 2 with relevant keywords (e.g., factory, shop floor and cyber manufacturing); (b) 

applying selective search strategies (see Table 3 and Appendix 2) to eliminate non-relevant 

sectors such as smart cities, agriculture and sewage treatment; and (c) manually screening the 

bibliometric search results to weed out non-relevant publications. Our approach (Table 3) 

offers greater precision than approaches that associate Smart Manufacturing, Industrie 4.0 and 

Industrial Internet with random signifiers. We consider journal and conference articles that 

relate to the above subfields in manufacturing and industrials such as power grids and 

automotive. We applied the above search strategies (in June 2020) to retrieve English and a 

limited number of German publications (with English translations) in Scopus between the 

period 2010 and 2019 under the subject areas Computer Science, Engineering, Chemical 

Engineering, Material Science, Mathematics, Decision Sciences, Energy, Physics and 

Astronomy, and Business, Management and Accounting. The publications extracted were 

cleaned using VantagePoint text-mining software and examined manually (mainly titles but at 

times abstracts to better interpret topics of empirical enquiry). The cleaned dataset included: 

Monitoring (1360 publications), Analytics (1210), Modelling-and-Simulation (2156), 

Transmission (1329) and Security (1175) – a total of 7230 publications (Note: For a publication 

judged to be associated with multiple subfields, we assign it equally to all subfields). If we 

remove duplicate records, our dataset comprises 7141 publications. 

 
3.4. Analysis of results 

In this section, we present the results of analyses using the subfield and overall publication 

datasets derived from the search. 

 

Domain growth and trajectories 

Worldwide cyber-physical convergence scientific output (N = 7230) encompassing the five 

subfields grew by almost nine times over the past decade from 217 papers in 2010 to over 1900 

papers in 2019 (Figure 4). 
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Figure 4: Worldwide Cyber-physical convergence publications (N = 7230, 2010–2019) encompassing 
all five subfields. Yearly totals are shown on top of the stacked bars. 

 

The overall publication growth inflection point arrived in 2016, whereby the number of articles 

in the most recent 4-year period (2016–2019) more than doubled the number of articles in the 

prior 6-year period (2010–2015). Yet, despite this surge in knowledge production, it is evident 

that not all subfields have grown at the same pace or contributed equally to the increase. While 

Modelling-and-Simulation, Monitoring and Transmission collectively formed about 84% of 

the total number of cyber-physical convergence output in 2010, these dropped to 56% in 2019, 

exhibiting an evolution from telecommunications and operations research to a more computer 

science orientation, that of Analytics and Security. 

 

To look deeper into relationships between ideas within the subfields and map their temporal 

shift, we draw on the idea of keyword co-occurrence. The theoretical foundation of co-

occurrence analysis is based on “actor network” – the idea that texts produced by scientists 

serve as a powerful tool to trace the social and epistemic dimensions of their research (Callon 

et al., 1986). Co-word analyses help produce maps of clustered keywords that shed light on the 

structure of scientific research (Callon et al., 1991). By comparing cluster changes for different 

time periods, the evolution of a research field can be assessed objectively (Callon et al., 1983). 

Cluster changes result from changes in policy, funding and other factors. Thus, co-occurrence 

mapping serve as a reasonable approach to uncover meaningful insights into the composition 

and dynamics of the cyber-physical convergence domain.  
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Figure 4: Worldwide Cyber-physical convergence publications (N = 7230, 2010–2019) 

encompassing all five subfields. Yearly totals are shown on top of the stacked bars.
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The maps presented in this study are developed using a software tool called VOSviewer, where 

each keyword is represented as a node and the line (that is, the link) between two nodes 

represents the number of publications in which they occur together (van Eck and Waltman, 

2017). The thicker the line, the stronger will be the link, meaning that they have appeared 

together in greater number of publications. Furthermore, the distance between two terms 

indicates the strength of their relation – a shorter distance refers to a larger number of co-

occurrences as they reside in similar research fields (Liao et al., 2018). VOSviewer was used 

to select the top 100 most frequent terms from all keywords (author-supplied and Scopus-

indexed) in the dataset. These were manually screened to remove terms that were redundant or 

irrelevant. The final set (containing around 10 important representative terms for each subfield) 

was then characterised using VOSviewer into clusters, producing an overlay map to assess the 

evolution of the research domain. 

 

Figure 5 shows four clusters of co-occurred terms, with Monitoring and Transmission forming 

a single cluster. This means terms related to these two subfields reside in similar research areas. 

Keywords co-occurrence shows what the global scientific community considers important at 

specific periods in time (Waaijer et al., 2010). In the 2015–2016 period, terms related to 

Monitoring (“sensing”, “sensors”, “monitoring”), Modelling-and-Simulation (“simulation”, 

“discrete event simulation”) and Transmission (“wireless sensor networks”, “wireless 

communications”) co-occur with higher frequency than Analytics and Security keywords. 

Another interesting observation is the emergence of the node “data acquisition” as an extention 

of “monitoring”. This might be an indication of the growing recognition of data collection 

(using sensors) as a foundational step of cyber-physical convergence.  

 

From 2017 onward, co-occurring terms related to Analytics (“machine learning”, “artificial 

intelligence”, “deep learning”) and Security (“network security”, “cyber security”, “intrusion 

detection”) started to outweigh terms associated with Monitoring, Modelling-and-Simulation 

and Transmission. This is because of the steady growth in average number of yearly Analytics 

and Security publications. Two additional insights can be gained from Figure 5: (a) External 

strength: the more numerous and thicker (that is, stronger) links between terms belonging to 

the Analytics and Security clusters indicate the growing importance of artificial intelligence 

and machine learning to address network security and cybersecurity research problems; and 

(b) Internal coherence: the greater density of links that tie the terms within these two 
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individual clusters represents the latters’ capacity to maintain themselves and further develop 

over time (Callon et al., 1991). These features, in turn, highlight the potential of Analytics and 

Security to drive the scientific and strategic growth of the research domain. 

 

 

Figure 5: Overlay co-occurrence map of the 50 most frequent terms covering the five subfields. 
Visualisation with VOSviewer. Node sizes scale with the frequency of terms in the cyber-physical 

convergence dataset. Bigger the node size (and its label), greater is its importance within a research 

cluster. Node colour shows the relative progression of co-occurring terms over the 2015–2018 period. 

Between 2015–2016, the average number of publications in which terms related to, for example, 
Modelling-and-Simulation (“simulation”, “discrete event simulation”, “scheduling”) co-occur 

outweighs Analytics and Security. This is an indication of research topics that are considered 

important subjects of empirical investigation at specific points in time. Link widths between terms are 
proportional to the number of publications in which they co-occur and distance between co-occurred 

terms show the extent to which they reside in similar research fields. 

 

Figure 5: Overlay co-occurrence map of the 50 most frequent terms covering the five 
subfields. Visualisation with VOSviewer. Node sizes scale with the frequency of terms in the 

cyber-physical convergence dataset. Bigger the node size (and its label), greater is its 
importance within a research cluster. Node colour shows the relative progression of co-

occurring terms over the 2015–2018 period. Between 2015–2016, the average number of 
publications in which terms related to, for example, Modelling-and-Simulation (“simulation”, 
“discrete event simulation”, “scheduling”) co-occur outweighs Analytics and Security. This is 

an indication of research topics that are considered important subjects of empirical 
investigation at specific points in time. Link widths between terms are proportional to the 

number of publications in which they co-occur and distance between co-occurred terms show 
the extent to which they reside in similar research fields.
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These evolving dynamics can also be viewed from another perspective – that of the 

contribution of each subfield to the overall cyber-physical convergence research domain. 

Figure 6 shows papers related to each subfield as a proportion of the total number of 

convergence papers in a year, and how these proportions have changed over the 2010-2019 

period. While Monitoring and Transmission have remained largely unchanged, the proportion 

of Modelling-and-Simulation related publications has been steadily decreasing since 2013. 

This is in sharp contrast to Analytics, whose proportion has more than doubled during the same 

period. Indeed, the absolute number of Modelling-and-Simulation publications has recorded 

an increase of only 17% in 2019 over the previous year, compared to 47% for Analytics (Figure 

4). One likely driver of these shifting focus of research could be the application of machine 

learning to support those activities that had been traditionally carried out by means of 

simulation, such as process optimisation, shop floor scheduling and production control (Figure 

5). This pattern also reflects an emerging literature that incorporates the use of data analytics 

in discrete event simulation applications (Greasley and Edwards, 2019). Security forms the 

other significant driver of the domain, forming 21% of the total publications in 2019 (Figure 

6). In other words, Security’s growth in 2019 is more than 50 times its 2010 output (Figure 4). 

 

Figure 6: Contribution of each subfield (as a proportion) to the total number of yearly cyber-physical 

convergence publications. 

 

Security forms the other significant driver of the domain, forming 21% of the total publications 

in 2019, which represents an 18% percentage points increase over 2010. In other words, 
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Figure 6: Converging pattern of each subfield’s contribution to the total number of yearly 

publications.
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Security’s growth in 2019 is more than 50 times its 2010 output. By comparison, the proportion 

of Monitoring and Transmission publications with respect to the yearly total has largely remained 

flat since 2013 onward (Figure 6). 

 

We measured cyber-physical convergence publications (as per paper) by year with publications 

from Scopus for same years, using “manufacturing” and other variations. We find that cyber-

physical convergence has a much faster growth rate. Publications on cyber-physical convergence 

have become increasingly important as a focus of research, expanding from 1.1% of all 

publications on manufacturing topics recorded in Scopus in 2010 to 1.7% in 2015, rising to 4.8% 

in 2019. 

 

National performance indicators 

Our cyber-physical convergence publication dataset includes publications by authors located 

in 91 countries, but only 18 countries produce 100 or more papers. Figure 7 shows the yearly 

publication trend of the top ten countries for the period 2010–2019. This figure is based on at 

least one author being affiliated with an institute in one of these countries, meaning that an 

internationally co-authored paper is equally allocated to authors of all affiliated countries. 

These ten countries account for 66.3% of the 8825 worldwide publications (after allocation). 

In terms of total number of articles, the U.S. is the leading country, with U.S.-based authors 

contributing to 17.5% (or 1542 articles) of the worldwide publications. Authors based in China 

contributed to 14.9% of publications (1312 articles), followed by Germany (10.5% or 923 

articles), Italy (4.6% or 409 articles) and U.K. (3.4% or 300 articles). 

 

Papers with U.S. and German authors have progressively grown since 2011, coinciding with 

the coining and subsequent institutionalisation of Smart Manufacturing, Industrial Internet and 

Industrie 4.0 between 2011 and 2014. However, the steepest rise in research output is in China: 

articles with at least one Chinese author grew by more than 12 times from 29 in 2010 to 370 in 

2019, overtaking the U.S. (343 articles) in 2019. Figure 7 shows that Chinese research output 

hit growth inflection in 2016. This shift resonates with China’s Made in China 2025 initiative, 

a state-led strategy unveiled in 2015, inspired by Germany’s Industrie 4.0, to upgrade the 

country’s manufacturing capability by investing in ten priority sectors, including information 

technology (Belton et al., 2019, Aaronson, 2019). 
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Figure 7: Cyber-physical convergence publication trend of the top ten countries by author affiliations. 
Worldwide publication count exceeds N = 7230 due to multiple author affiliations of internationally 

co-authored papers. 

 

These findings, when compared to growth patterns reported in other scientific fields such as 

artificial intelligence, reveal additional insights. As Figure 7 shows, Chinese growth inflection 

point arrived much later in cyber-physical convergence (2016) when compared to artificial 

intelligence (in 2010) (Liu et al., 2021). Chinese cyber-physical convergence output overtook 

the U.S. in mid-2018. By comparison, artificial intelligence publications by authors affiliated 

with Chinese organisations pulled ahead of U.S.-affiliated authors as early as 2010 (Liu et al., 

2021). 

While the U.S., China and Germany dominate scientific output in absolute terms (Figure 7), 

growth in terms of proportion over the 10-year period presents a different picture. According 

to this measure, Italy demonstrated the largest increase in cyber-physical convergence 

scientific output with a 36.7-fold (or 3667%) rise from three papers in 2010 and to 113 papers 

in 2019. Italy is followed by India and France, both countries showing about 24-fold increase 

in that same period. These developments coincide with the introduction of national industrial 

strategies and programmes in those countries – namely, Industria 4.0 (Italy), Make in India 
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Figure 7: Publication trend of the top ten countries by author affiliations (2010–2019). 
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internationally co-authored papers.
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(India) and Industrie du Futur (France). By comparison, the proportion increase in U.S. (5-

fold), Chinese (11-fold) and German (11-fold) publications were relatively modest. 

At a subfield level, the bulk of research production between 2010–2019 by the top ten countries 

is further concentrated at the top three (Figure 8). Thus, publications with at least one U.S.-, 

China- and Germany-based author account for more than half the total top ten output for all 

five subfields: Monitoring – 59.4%, Analytics – 65.5%, Modelling-and-Simulation – 63.4%, 

Transmission – 63.5% and Security – 71.6%. 

 

Figure 8: Subfield breakdown of cyber-physical convergence publication counts of top ten countries 

by author affiliations. 

 

Security is the biggest differentiator in U.S. and Chinese cyber-physical convergence research 

output when compared to articles by Germany-based authors (Figure 9). For China, the 

contribution of Security-related papers to the total number of yearly publications increased 

sharply from 3% in 2010 to 32% in 2019. 
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Figure 9: Contribution of each subfield to the total number of cyber-physical convergence 

publications in 2010 and 2019. 

 

As regards to the scientific quality of papers, citation counts are often used to demonstrate 

research significance (Cole and Cole, 1973, p. 21) and impact (Aksnes et al., 2019). Although 

not without caveats (e.g., field, national, and reputational influences on citation propensities), 

the higher the number of citations of a publication, the higher is its perceived quality and 

influence (Durieux and Gevenois, 2010). We examined highly cited publications (more than 

100 citations) for U.S., China and Germany for two time periods: 2010-2014 and 2015-2019 

(Table 4). During the first period, authors affiliated with U.S. organisations published 375 

papers out of which 21 received more than 100 citations, followed by China (two out of 337 

papers) and Germany (one out of 159 papers). Between 2015 and 2019, U.S. publication output 

was 1167 among which five papers fell within the highly cited category. For Germany, it was 

2 out of 764 papers. By comparison, seven papers out of a total of 975 by authors affiliated 

with Chinese institutes received more than 100 citations, indicating a growing measure of 

quality and impact of Chinese contributions. 
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2010-2014 2015-2019 

 

Total no. of 

publications 

Highly-

cited 

publications 

Total no. of 

publications 

Highly-cited 

publications 

U.S. 375 21 1167 5 

China 337 2 975 7 

Germany 159 1 764 2 

Table 4: Citation count, cyber-physical convergence publications (highly citated publications have 

more than 100 citations). 
 

An important way in which research trajectory changes – certain topics are more preferred than 

others  – is through the agency of funding (Franzoni et al., 2011). Because resources are limited, 

new areas compete with and may grow at the expense of established research fields. External 

funding is particularly important to scale up emerging scientific fields, be it in terms of 

expanding collaborations, producing academic papers or attracting attention. The influence of 

financial incentives on research is perhaps most overt when research is directly commissioned 

by sources with specific policy interests (Boswell and Smith, 2017). For our cyber-physical 

convergence publication dataset, we analyse funding acknowledgement data of articles 

following Wang and Shapira (2011). Of the 7858 articles in our dataset, around 40% or 3101 

papers acknowledge one or more funders. The growth inflection point occurred in 2016, 

whereby the percentage of such papers (as a fraction of the 3101 dataset) increased from 8% 

in 2010–2015 to 80% in 2016–2019. The highest growth, both in absolute and proportionate 

terms, occurred in Security where the number of articles grew from one in 2010 to 260 in 2019, 

followed by Analytics (increased from three articles in 2010 to 240 in 2019). 

 

The types of sponsor acknowledged include research councils, regional and federal government 

departments and agencies, universities, scholarship and fellowship programmes, foundations 

and firms. There were more than 6500 names (and their variants) of sponsors. Different variants 

(abbreviations, acronyms, spelling errors) of sponsors were cleaned (manually and using 

VantagePoint) and then combined. After two rounds of cleaning, we zoomed in on the top ten 

sponsors in terms of articles with funding acknowledgement (Figure10). All sponsors in the 

top ten group funded more papers in the 2016–2019 period than in the prior 2010–2015 period. 

These ten sponsors accounted for 53.9% of the funded articles (or 1466 articles) published 

between 2010 and 2019, within which a group of five funders is acknowledged in about 83% 

of the articles. The National Natural Science Foundation of China (NSFC) leads with 427 
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articles, followed by the European Union or EU (308 articles), the National Science Foundation 

or NSF (288 articles) and the two German sponsors – the Federal Ministry of Education and 

Research or BMBF (101 articles) and the German Research Foundation or DFG (81 articles). 

Overall, the US has three funders among the top ten global sponsors (including U.S. 

Department of Energy and Defense Advanced Research Projects Agency), Germany has two, 

China, South Korea, Taiwan, the U.K. and the EU have one each. 

 

Figure 10: Top ten research sponsors of cyber-physical convergence publications (with one or more 

funding acknowledgements, 2010–2019). 

 

The number of papers with acknowledged NSFC sponsorship has increased by more than 15 

times since the inflection point in 2016 and overtaken both the EU and the NSF by 2017. In 

addition to NSFC, which is managed by the Ministry of Science and Technology of China, two 

other notable Chinese funders in the top 20 research sponsors are the National Basic Research 

Program of China (973 Program) and the China Postdoctoral Science Foundation. Backed by 

such support, China’s output in cyber-physical convergence research has increased by over 

300% from 77 articles in 2015 to 370 in 2019. 

 

Comparing the recent with the previous year, the biggest growth in the number of funded 

papers occurred in NSFC-sponsored Security articles – 71 articles in 2019. This mirrors 

China’s broader trend to regulate digital activities and counter threats in manufacturing through 

the coming into effect of its new Cybersecurity Law in June 2017 (Belton et al., 2019). The 

growth in Security articles also coincides with a steady rise in total funding for “information 
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Figure 9: Top ten research sponsors of cyber-physical convergence publications (with one or more funding 

acknowledgements, 2010–2019)
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and network security” projects under the following NSFC programmes: General Program, 

Young Scientists Fund and Fund for Less Developed Regions (Table 5). 

 

Table 5:  NSFC funding for “information and network security” projects1 (In millions of US Dollars). 

 

In line with these developments, but more specifically for manufacturing, the NSFC–

Guangdong Province joint funding programme was initiated in 2015 to support basic research 

in “security characteristics of discrete manufacturing networks based on industrial big data” 

(NSFC, 2019). A second strategic area for NSFC sponsorship is Analytics. The number of 

Analytics articles acknowledging NSFC funding increased from one in 2015 to 44 in 2019. 

Comparable to this growth are: (a) the increase in NSFC’s support (under General Program 

Projects) for artificial intelligence (AI) applications from USD 12.9 million in 2015 to USD 

13.9 million in 2017; and (b) the creation of the NSFC–Zhejiang joint fund programme for the 

period 2015 – 2019 to support the integration of AI into manufacturing operations (NSFC, 

2019).  

 

The steady increase in Analytics and Security articles acknowledging NSF funding reflects the 

United States’ broader R&D priorities. In October 2016, the U.S. National Artificial 

Intelligence Research and Development Strategic Plan was advanced to invest in basic AI R&D 

that may impact a wide range of industries, including manufacuring. Since then, the NSF has 

funded/co-funded research in artificial intelligence, notably the Real-Time Machine Learning 

(RTML) programme with the Defense Advanced Research Projects Agency (NITRD, 2019). 

The aim of this programme is to explore “high-performance, energy-efficient hardware for 

real-time machine-learning” and spans 1017 active awards of approximately USD 400 million 

(as of August 3, 2020)2. Similarly, the 2011 report, “Trustworthy Cyberspace: Strategic Plan 

for the Federal Cybersecurity Research and Development Program” laid the foundation to 

make cybersecurity a cross-cutting research agenda across multiple sectors such as 

 
1 Funding data collected from NSFC Guide to Program reports for the years 2015–2018 (latest available data). Currency 

converted from Chinese Yuan (CNY) to US Dollar (USD) at 1 CHY = 0.14276 USD as on 30 July 2020 
2 Total dollar amounts and number of awards calculated from the NSF RTML Active Awards database: 

https://www.nsf.gov/awards/award_visualization.jsp?org=NSF&pims_id=505640&ProgEleCode=7564,7798&from=fund 

 

NSFC Funding Programmes 2015 2016 2017 2018 

General Program Projects 12.9 12.8 13.9 14.1 

Young Scientists Fund 4.7 4.6 5.8 5.7 

Fund for Less Developed Regions 1.2 1.1 1.1 1.1 

Total 18.9 18.5 20.8 20.9 

https://www.nsf.gov/awards/award_visualization.jsp?org=NSF&pims_id=505640&ProgEleCode=7564,7798&from=fund
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manufacturing. To support this plan, the NSF through its flagship Secure and Trustworthy 

Cyberspace (SaTC) programme (Amla et al., 2012), has invested around USD 430 million in 

950 active awards (as of August 3, 2020)3. A more recent 2018 report called “Strategy for 

American Leadership in Advanced Manufacturing” builds on earlier versions of PCAST 

recommendations and identifies cybersecurity as a priority area. In accordance with this report, 

the NSF has launched its Future Manufacturing programme that aims to fund basic research in 

cybersecurity and analytics in 2020 by awarding grants of USD 500,000 to 2 million per year 

for up to five years (NSF, 2020). 

 

Policy labelling in research output 

So far, we have seen that since the coining of the three concepts, cyber-physical convergence 

research output has grown, albeit at varying pace, magnitude and direction, in their countries 

of origin as well as other countries, some of which have introduced their own versions of the 

concepts. At least part of this growth has been driven by concerted government-led funding 

efforts. While policy influence on knowledge is most overt when research is funded, there are 

other, subtler ways in which such influence may be felt (Boswell and Smith, 2017). A rich 

body of literature in science policy, sociology of science and science and technology studies 

(see for a critical review Boswell and Smith, 2017) argues that scientific knowledge production 

picks up signals from different public and private sources to secure legitimacy and support. 

Authors label new or existing work with the hope or expectation of their research being found 

serendipitously by funding bodies (Mogoutov and Kahane, 2007). Labels have also been used 

as “umbrella terms” (terms of unclear scope that may be useful in gaining support in emerging 

and strategic fields, for example, nanotechnology) to signal changes in research content caused 

by direct or indirect external intervention (Rip and Voß, 2013). In this section, we take a closer 

look into policy labelling in cyber-physical convergence research, and what this reflects about 

policy discourses and approaches in different countries. In doing so, we contribute to “policy 

shapes knowledge” debates (Boswell and Smith, 2017), which have important implications for 

the development of a research domain (Merz and Sormani, 2016). 

 

We focus on keywords that are both exact and synonymous matches to Smart Manufacturing, 

Industrie 4.0 and Industrial Internet. Hence, Industrial Internet includes the variants “industrial 

 
3 Total dollar amounts and number of awards calculated from the NSF SaTC Active Awards database: 

https://www.nsf.gov/awards/award_visualization.jsp?org=NSF&pims_id=504709&ProgEleCode=8060&from=fund 

https://www.nsf.gov/awards/award_visualization.jsp?org=NSF&pims_id=504709&ProgEleCode=8060&from=fund
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internet”, “industrial iot”, “iiot” and “internet of things”, Smart Manufacturing includes “smart 

manufacturing”, “advanced manufacturing” and “cyber manufacturing” and Industrie 4.0 

includes “industry 4.0” and “industrie 4.0”. We argue that specific keywords related to Smart 

Manufacturing, Industrie 4.0 and Industrial Internet act as satisfying proxies of policy influence 

on research growth. These terms are extracted from titles, abstracts and author keywords of the 

cyber-physical convergence dataset. Publications with multiple terms are assigned equally to 

all indicated terms. This process yielded a total of 1653 publications spanning the top ten 

countries by author affiliations for the period 2010–2019. Table 6 presents the breakdown of 

labelled publications. 

Table 6: Number of labelled publications, top ten countries by author affiliation. 

 

As might be expected, U.S.- and Germany-based authors lead in labelling their research in 

terms of their respective national industrial policies. However, only about 5% (or 77 papers) 

of all publications by U.S.-based authors are labelled as “smart manufacturing” compared to 

about 28% or 256 “industry 4.0” labelled articles by German authors. These findings are 

insightful from the perspective of manufacturing innovation approaches in these two countries. 

While Industrie 4.0 is characterised by a state-coordinated strategy, the U.S. approach is 

market-driven with less stricter government mandates (Belton et al., 2019). Consequently, 

German policy emphasis has been on developing a consistent industrial discourse through 

concerted efforts of different stakeholders (Horst and Santiago, 2018). Over time, as our 

findings suggest, this discourse has become reinforced in German scientific output through 

greater reference to Industrie 4.0. For the U.S., the impetus for growth in knowledge production 

has come through a constellation of discourses. This originally included Smart Manufacturing 

as a data-centric approach to achieve energy efficiency in production. Smart Manufacturing 

Countries 
Smart 

Manufacturing 
Industrie 4.0 Industrial Internet 

United States 77 61 156 

China 49 75 166 

Germany 25 259 90 

Italy 10 110 50 

United Kingdom 17 48 48 

India 11 27 78 

South Korea 20 25 55 

Japan 8 15 38 

France 6 36 38 

Sweden 3 23 29 
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itself was carved out of a broader, whole-of-government initiative called Advanced 

Manufacturing to boost U.S. national security and manufacturing competitiveness (PCAST, 

2014). In its most recent embodiment, this constellation includes Future Manufacturing: 

“manufacturing that either does not exist today or exists only at such small scales that it is not 

viable” (NSF, 2020). Such an evolving discourse could mean usage of Smart Manufacturing 

has not achieved particular prominence among U.S.-affiliated authors. This is because authors 

continuously experiment with different labelling strategies to seek attention for their scientific 

endeavours (Rip and Voß, 2013). 

 

“Industrial internet”, on the other hand, shows wider acceptance and usage by all of the top ten 

countries, particularly by China-based researchers (N = 166 or about 13% of all Chinese 

publications). This is likely due to the morphing of “industrial internet” into a more general 

terminology that indicates a technological enabler of Industrie 4.0 (Jeschke et al., 2017). For 

China, developing indigenous industrial internet platforms is a central priority of its top-down, 

state-led Made in China 2025 programme (Arcesati et al., 2020). The Chinese Ministry of 

Industry and Information Technology established (and governs) the public-private Alliance of 

Industrial Internet in 2016 (along the lines of the U.S. Industrial Internet Consortium) to 

facilitate collaborative research in this space. In packaging their research using “industrial 

internet” labels, China-based authors also seem to compete for interactions with NSFC, which 

has actively endorsed funding opportunities to create a cross-sectoral industrial internet 

platform (NSFC, 2019). 

 

4. Discussion and conclusions 

Cyber-physical convergence – the pervasive integration of data into manufacturing and 

industrial processes – has assumed increasing importance among policymakers for its 

perceived ability to drive productivity growth, strengthen national security and address other 

ideological and business concerns (Evans and Annunziata, 2012, Kagermann et al., 2013, 

PCAST, 2011). This has spurred government and private interventions in many countries under 

the banner of industrial and/or innovation policy concepts. Policy interest, in parallel, has been 

matched as well as influenced by growth in academic research. Yet, as a domain of study, 

cyber-physical convergence has itself received little attention, particularly in terms of 

delineation, operationalisation and measurement. 
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The analysis in this paper has presented a newly constructed definition of cyber-physical 

convergence that is closely aligned with three pioneering concepts: the U.S. state-managed 

Smart Manufacturing, the U.S. private sector-led Industrial Internet, and the German public-

private coordinated Industrie 4.0. These concepts are pioneering because they recognised and 

institutionalised the emerging importance of convergence, and set the scene for other countries 

to follow suit. We defined convergence as a “data-centric workflow that makes use of specific 

capabilities, starting with data acquisition from physical sources, and then continuing through 

to the generation of actionable insights”. A core set of policy and technical documents related 

to the three concepts (Appendix 1) was the main source, based on which we conceived our 

definition. This definition appreciates the fact that data is now an increasingly valuable asset 

for manufacturing firms and will dictate interactions between humans, systems and firms 

(Belton et al., 2019).  

 

We then built a lexicon of relevant keywords and progressively enriched it using natural 

language processing approaches. Because our characterisation of convergence starts at the data 

level, it could be more precisely – and originally – operationalised. This resulted in the original 

demarcation of the convergence research domain into five subfields: (i) Monitoring, (ii) 

Analytics, (iii) Modelling-and-Simulation, (iv) Transmission and (v) Security. Finally, we 

conducted a targeted bibliometric search, and measured growth and trajectories of the domain 

in the period 2010–2019. In tracking these dynamics, we zoomed in on the internal structures 

of the subfields (in terms of their degree of temporal development), national outputs (supported 

by funding structures) and policy labelling. 

 

In summary, these analyses lead to three perspectives on the interactions of policy with the 

growth and trajectories of academic research. Our first perspective examines how the overall 

growth of the cyber-physical convergence research domain varies by subfields. We find the 

relative contributions of the subfields to the overall output converging over time, an indication 

of the influence of external stimuli to trigger a greater preference of certain topics. A key 

message of this perspective is that, beginning the mid-2010s, Analytics and Security have 

assumed central positions within the convergence research domain. Particularly the latter, even 

though it was not explicitly included in the definitions of convergence advanced by the three 

concepts (Table 1), has grown by leaps and bounds in terms of scientific output. These 

dynamics seem to coincide with a “strategic turn” in science policy, as policymakers now 
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consider artificial intelligence and cybersecurity central to national industrial growth (Arcesati 

et al., 2020, PCAST, 2020). 

 

Our second perspective analyses how exactly national-level interventions have contributed to 

this evolution of the domain. Funding represents perhaps the most direct mechanism through 

which policy shapes the production of knowledge (Boswell and Smith, 2017). Within this 

governance system, research funding agencies act as key mediators (Gläser and Laudel, 2016). 

While the shift towards Analytics has been largely driven by U.S., China and Germany 

affiliated authors, it is the former two that have emerged as foremost in Security. These efforts, 

as we have seen, are backed by concerted U.S. and Chinese funding programmes. We find that 

Smart Manufacturing, Industrial Internet and Industrie 4.0 have become a reference point for 

Chinese policy makers and funding agencies, leading to a “funding race” in which China has 

significantly scaled up and pulled ahead in funding Analytics and Security research. 

 

Our final perspective sheds light on the extent to which the three concepts are embedded – as 

labels – in cyber-physical convergence research. Labelling research using policy terminology 

is a subtle, but important, way to validate discourses, gain recognition and mobilise resources 

(Rip and Voß, 2013). In comparing the labelling patterns of Smart Manufacturing, Industrial 

Internet and Industrie 4.0, we find that Industrie 4.0, because of its unified and consistent 

discourse, has become more persistent in German scientific content when compared to Smart 

Manufacturing in U.S. knowledge output. By comparison, the “industrial internet” label has 

achieved wider acceptance, particularly in China, which coincides with China’s centrally 

coordinated R&D programmes to develop an indigenous industrial internet. Indeed, these 

observations support the assessment that different types of policy approaches and discourses 

have different macro-level manifestations in research (Gläser and Laudel, 2016). 

 

Shifting attention to the limitations of our paper, we acknowledge the potential imperfections 

associated with defining and then operationalising the notion of cyber-physical convergence. 

This paper focuses on cyber-physical convergence in manufacturing and industrials sectors, so 

the findings may not be relevant to other sectors such as services and retail. Our attempt in this 

paper has been to shed light on the potential influence of policy on research by intrinsically 

building up the research domain itself from original policy guidelines. Even then, we recognise 

that establishing direct causal links is problematic because of the many complex variables 

between the two (Gläser and Laudel, 2016, Leydesdorff, 1989), and also due to the multiple 
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units of analysis (scientists, documents and cognitive content) of the scientific enterprise itself. 

As such, deeper insights of the mechanisms through which policy influences scientific output 

would help in the better interpretation of results. While our definition of convergence directly 

draws on conceptions advocated by the original proponents of Smart Manufacturing, Industrial 

Internet and Industrie 4.0, there may be differences regarding what other experts and 

stakeholders consider important as to the definition. The choice of keywords to delineate the 

research domain may also be disputed. Although we have carefully selected and enriched the 

keywords using a modular text-mining approach, we may have dropped certain terms that 

others will consider. Then there are the usual limitations associated with Scopus in terms of 

the scope of indexed publications and completeness of funding acknowledgements. 

 

Notwithstanding these limitations, our paper has moved the policy–research nexus forward by 

systematically defining and chalking out – for the first time to our knowledge – a boundary 

around the cyber-physical convergence research domain. The use of a controlled vocabulary 

helps navigate through “uninformatively circular” and random usage of concepts such as 

Industrial Internet and Industrie 4.0 (Boyes et al., 2018) that have rapidly swamped the domain. 

Moreover, our analysis opens a new viewpoint for understanding the influence of policy on the 

growth and directionality of academic research. In so doing, the paper offers insights for 

academia, policy and practice, particularly at a time when innovation in manufacturing and 

industrials has assumed new prominence. 

 

We envisage several opportunities for future research. First, it will be useful to continue 

refining our subfield operationalisation and bibliometric strategies by testing and adding 

relevant keywords. Second, including terms related to policy concepts that have emerged after 

Industrie 4.0, Smart Manufacturing and Industrial Internet will expand the scope of the current 

research design. Finally, in this paper, we found differences between the labelling patterns of 

U.S., China- and Germany-based authors. Yet our knowledge of the causal impacts of policy 

on the direction or quality of scientific output is limited. Therefore, more detailed analyses of 

our results at a micro-level (scientists and experts as the units of analysis), applying qualitative 

or sociological approaches such as case studies (Leydesdorff, 1989, Rip, 1997) could provide 

a better understanding of causality in the direction or quality of research. Also, increasing 

access to funding data may provide further insights into the influence of policy on cyber-

physical convergence research.
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Appendix 1 
 

Concepts Policy and technical reports 

Smart 

Manufacturing 

Report to the President on Ensuring American Leadership in 

Advanced Manufacturing (PCAST, 2011) 

Report to the President: Accelerating U.S. Advanced Manufacturing 

(PCAST, 2014) 

Economic Analysis of Technology Infrastructure Needs for Advanced 

Manufacturing - Smart Manufacturing (Gallaher et al., 2016) 

An Introduction to Smart Manufacturing: Lighting the Path to the 

Value of your Data (CESMII, 2019) 

Industrial 

Internet 

Industrial Internet: Pushing the Boundaries of Minds and Machines 

(Evans and Annunziata, 2012) 

Industrial Internet Reference Architecture (Lin et al., 2015) 

Industrie 4.0 

Cyber-Physical Systems. Driving Force for Innovation in Mobility, 

Health, Energy and Production (Hellinger and Seeger, 2011) 

Recommendations for Implementing the Strategic Initiative 

INDUSTRIE 4.0: Securing the Future of German Manufacturing 

Industry (Kagermann et al., 2013) 

Living in a Networked World: Integrated Research Agenda Cyber-

Physical Systems (agendaCPS) (Geisberger and Broy, 2015) 
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Appendix 2 

 

Exclusion terms were introduced to remove extraneous articles associated with the subfield 

keywords. For all five subfields, we excluded the terms “survey”, “review”, “overview”, 

“trend”, “challenge”, “opportunity” and “landscape” to eliminate articles that summarise 

current states of research or forecast future research areas. This is because the focus of this 

paper is to systematically define the technical and technological boundaries of the research 

domain. The terms “bacteria”, “microbe”, “coli” and “culture” were added to avoid records 

associated with transmission and monitoring of, for example, microbes. Similarly, “cities”, 

“agriculture”, “water”, “waste”, “garbage” and “sewage” were included to eliminate as they 

captured articles outside our scope of manufacturing and industrials (namely, urban and 

regional planning, crop protection and farming and waste management). 

 

Subfield keywords Specific exclusion terms Comments 

(“monitor*” OR 

“sens*” OR “collect*” 

OR “acqui*”) 
“sensitive”, “sensual”  

Eliminates extraneous records 

associated with the truncation 

“sens*” 

(“analytics” OR 

“learning” OR “neural 

network” OR 

“intelligence”) 

“skills”, “educat*”, 

“curricul*”, “school”, 

“training”, “module”, 

“course”, “graduat*”   

Excludes extraneous articles 

associated with the keyword 

“learning” and “intelligence” 

(“transmi*” OR 

“communicat*” OR 

“network*” OR 

“wireless”) 

“sens*”, “neural” 

Excludes articles associated with 

the truncation “sens*” and the 

keyword “neural” because they 

are captured under Analytics 
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